Genetic diversity and population structure of Marsh Grassbird (Locustella pryeri sinensis) in China

Wei-Wei Zhang , Yu-Ming Zhang , Qiang Wang , Feng Li

Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (3) : 361 -366.

PDF
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (3) : 361 -366. DOI: 10.1007/s11676-010-0082-3
Original Paper

Genetic diversity and population structure of Marsh Grassbird (Locustella pryeri sinensis) in China

Author information +
History +
PDF

Abstract

We used sequences of mitochondrial control region (807bp) in 75 samples from three breeding colonies and one wintering population to investigate the genetic diversity and population structure of Marsh Grassbird (Locustella pryeri sinensis) in different regions of China. Marsh Grassbird retained a moderate amount of haplotype (0.759 ± 0.056) and nucleotide diversity (0.002). The results of F ST among 3 phylogeographic units and Φ ST between breeding and wintering sites revealed little evidence of genetic distinction between different colonies. Neither UPGMA tree structure analysis nor Network picture analysis showed obvious divergence between populations at different locations. Analysis of molecular variance also showed a lack of regional subdivision within Locustella pryeri sinesis, 98.5% of source of variation within populations and only 1.5% among populations. The neutrality test showed negative Fu’s FS value, which, in combination with detection of the mismatch distribution, suggested that population expansion occurred in the evolutionary history of this species. This hypothesis was further supported by Tajima’s D test and Fu’s test (D = −1.80, p = 0.02; Fs = −22.11, p = 0.001), this expansion was estimated to occur about 28,700 years ago.

Cite this article

Download citation ▾
Wei-Wei Zhang, Yu-Ming Zhang, Qiang Wang, Feng Li. Genetic diversity and population structure of Marsh Grassbird (Locustella pryeri sinensis) in China. Journal of Forestry Research, 2010, 21(3): 361-366 DOI:10.1007/s11676-010-0082-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aquadro C.F., Greenberg B.D.. Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics, 1983, 103: 287-312.

[2]

Avise J.C.. Molecular markers, natural history and evolution. 1994, New York, USA: Chapman and Hall

[3]

Avise J.C., Hamrick J.L.. Conservation genetics: Case histories from nature. 1996, New York: Chapman and Hall

[4]

Avise J.C.. Phylogeography: the history and formation of species. 2000, Cambridge, MA: Harvard University Press

[5]

Barrowclough G.F., Groth J.G., Mertz L.A., Gutiérrez R.J.. Genetic structure, introgression, and a narrow hybrid zone between Northern and California spotted owls (Strix occidentalis). Mol Ecol, 2005, 14: 1109-1120.

[6]

Bandelt H., Forster P., Röhl A.. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, 16: 37-48.

[7]

Bensch S., Hasselquist D.. Phylogeographic population structure of great reed warblers: an analysis of mtDNA control region sequences. Biol J Linn Soc, 1999, 66: 171-185.

[8]

Collar NJ. 2001. Threatened Birds of Asia: The Birdlife International Red Data Book Part A. Wild bird & Nature of the Globe.2179–2186.

[9]

Edwards S.V., Kingan S.B., Calkins J.D., Balakrishnan C.N., Jennings W.B., Swanson W.J., Sorenson M.D.. Speciation in birds: genes, geography and sexual selection. Proc Natl Acad Sci U S A, 2005, 102: 6550-6557.

[10]

Excoffier L., Smouse P.E., Quattro J.M.. Analysis of molecular variance inferred from metric distances among DNA haplotpes: application to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479-491.

[11]

Excoffier, Laval L.G., Schneider S.. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 2005, 1: 47-50.

[12]

Forster P., Torroni A., Renfrew C., Röhl A.. Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol Biol Evol, 2001, 18: 1864-1881.

[13]

Fu Y.X.. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147: 915-925.

[14]

Fujita G., Nagata H.. Preferable habitat characteristics of male Japanese marsh warbler Megalurus pryeri in breeding season at Hotokenuma reclaimed area, Northern Honshu. Japan J. Yamashina Institute for Ornithology, 1997, 29: 43-49.

[15]

Gan X., Zhang K., Tang S., Li B., Ma Zhijun.. Three new records of birds in Shanghai: Locustella pleskei (Pleske’s Warbler), Megalurus pryeri (Japanese Swamp Warbler) and Acrocephalus concinens (Blunt-winged Paddyfield Warbler). J Fudan University (Nat. Sci.), 2006, 45: 417-419.

[16]

Grant P.R., Grant B.R., Petren K., Keller L.F.. Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galapagos. Biol Conser, 2005, 122: 499-503.

[17]

He F., Lin J., Huang X., Dong Wenxiao.. Preliminary report on the Poyang lake breeding subpopulation of the march grassbird in Jiangxi of central south China. Chinese J Zool, 2008, 43: 70-72.

[18]

IUCN. 2010. IUCN Red List of Threatened Species. Version 2010.1. www.iucnredlist.org. Downloaded on 22 March 2010.

[19]

Kumar S., Tamura K., Nei M.. MEGA, Molecular Evolutionary Genetic Analysis ver 1.0. 1993, University Park, PA 16802: The Pennsylvania State University

[20]

Li F., Wang Qiang.. Breeding biology of Japanese Marsh warbler’s sinensis subspecies. Acta Zool Sin, 2006, 52: 1162-1168.

[21]

Librado P., Rozas J.. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451-1452.

[22]

MacKinnon J., Phillipps K., He F.Q.. A field guide to the birds of China. 2000, Changsha, China: Hunan Education Press

[23]

Polzin T., Daneschmand S.V.. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 2003, 31: 12-20.

[24]

Posada D., Crandall K.A.. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817-818.

[25]

Sambrook J., Russell D.W.. Molecular Cloning, A Laboratory Manual, 2001 3rd edn. New York: Cold Spring Harbor Laboratory Press

[26]

Starkey D.E., Shaffer H.B., Burke R.L., Forstner M.R.J., Iverson J.B., Janzen F.J., Rhodin G.J., Ultsch G.R.. Molecular systematics, phylogeography and the effects of Pleistocene glaciation in the painted turtle Chrysemys picta complex. Evolution, 2003, 57(1): 119-128.

[27]

Tamura K., Dudley J., Nei M., Kumar S.. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol, 2007, 24: 1596-1599.

[28]

Tajima F.. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585-595.

[29]

Tarr C.L.. Primers for amplification and determination of mitochondrial control-region sequences in Oscine Passerines. Mo Ecol, 1995, 4: 527-529.

[30]

Templeton A.R., Routman E., Philips C.A.. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinurn. Genetics, 1995, 140: 767-782.

[31]

Wenink P.W., Baker A.J., Rosner H.-U., Tilanus M.G.J.. Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidrk alpzna). Eriolution, 1996, 50: 318-330.

[32]

Xichu L.. The survey of the Japanese marsh warbler (Megalurus pryeri) on Hachirogata Reclaimed Land. Akita prefecture, 1982, 1: 7-18.

[33]

Zheng G.. A checklist on the classification and distribution of the birds of China. 2005, Beijing, China: Science Press

[34]

Zink M.R., Pavlova A., Drovetski S., Rohwer S.. Mitochondrial phylogeographies of five widespread Eurasian bird species. J Ornithol, 2008, 149: 399-413.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/