Lethal effects of pyrethrins on spruce budworm (Choristoneura fumiferana)

Hong-jiao Cai , Min-sheng You , Jian-wei Fu , Krista Ryall , Shi-you Li

Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (3) : 350 -354.

PDF
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (3) : 350 -354. DOI: 10.1007/s11676-010-0081-4
Original Paper

Lethal effects of pyrethrins on spruce budworm (Choristoneura fumiferana)

Author information +
History +
PDF

Abstract

Spruce budworm (Choristoneura fumiferana (Clemens)) is one of the most serious forest insect pests in North America. Laboratory bioassays were performed to determine the lethal doses and lethal time of pyrethrins (a botanical insecticide) on 4th instar larvae of spruce budworm using larval dip assay. Results show that the LT50 values (time of 50% larval mortality) for spruce budworm at the pyrethrins concentrations of 12.5, 25, 50, 100, and 200 μg·L−1 were 94.78, 45.54, 20.36, 14.39 and 11.37 h, respectively. The percentage of cumulative mortality at the pyrethrins concentrations of 12.5, 25, 50, 100, 200 μg·L−1 was approximately 50%, 67%, 93%, 100% and 100% within 120 h, respectively. The LC50 value (concentration of 50% larval mortality) for the 4th instar larvae was 16.1μg·L−1. Thus, larval mortality of spruce budworm increased in a concentration-dependent manner, and lethal time decreased with increasing pyrethin concentrations. These findings suggest that pyrethrins have a potential in controlling spruce budworm populations.

Cite this article

Download citation ▾
Hong-jiao Cai, Min-sheng You, Jian-wei Fu, Krista Ryall, Shi-you Li. Lethal effects of pyrethrins on spruce budworm (Choristoneura fumiferana). Journal of Forestry Research, 2010, 21(3): 350-354 DOI:10.1007/s11676-010-0081-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ameen M., Shahjahan R.M., Khan H.R., Chowdhury A.K.A.. Toxicity of rotenone extracted from indigenous Derris roots on mosquito larvae. J Bangladesh Acad Sci, 1983, 7: 39-47.

[2]

Appel A.G., Gehret M.J., Tanley M.J.. Effects of moisture on the toxicity of inorganic and organic insecticidal dust formulations to German cockroaches (Blattodea: Blattellidae). J Econ Entomol, 2004, 97: 1009-1016.

[3]

Banerji A., Luthria D.L., Kokate S.D.. Toxicity of capillin, the insecticidal principle of Artemisia nilagirica Clarke. Indian J Exp Bio, 1990, 28: 588-589.

[4]

Barcic J.I., Bzaok R., Bezjak S., Culjak T.G., Barcic J.. Combinations of several insecticides used for integrated control of Colorado potato beetle (Leptinotarsa decemlineata, Say., Coleoptera: Chrysomelidae). J Pest Sci, 2006, 79: 223-232.

[5]

Benezet H.J., Huffman B.B., Helms C.W.. Comparative toxicity of selected insecticides to the cigarette beetle at different temperatures. Tob Sci, 1988, 32: 71-73.

[6]

Cadogan B.L., Scharbach R.D., Brown K.W., Ebling P.M., Payne N.J., Krause R.E.. Experimental aerial application of a new isolate of the nucleopolyhedrovirus, CfMNPV against Choristoneura fumiferana (Lepidoptera: Tortricidae). Crop prot, 2004, 23: 1-9.

[7]

Cadogan B.L., Scharbacha R.D., Knowlesb K.R., Krausea R.E.. Efficacy evaluation of a reduced dosage of tebufenozide applied aerially to control spruce budworm (Choristoneura fumiferana). Crop Pro, 2005, 24: 567-553.

[8]

Cunningham J.C.. Grimble D.G., Lewis F.B.. Microbial Control of Spruce Budworms and Gypsy Moth. Proceedings Symposium. 1985, Washiontong: Department of Agriculture, USA, 61 67

[9]

Elliott M.. The pyrethroids: early discovery, recent advances and the future. Pestis Sci, 1989, 27: 1337-351.

[10]

EPA EPA strategic plan. 2000, Washington DC, USA: United States Environment Protection Agency, 1 77

[11]

Hitmi A., Coudret A., Barthomeuf C.. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagefes species. Critical Rev Plan Sci, 2000, 19: 69-89.

[12]

Igrc Baric J., Bazok R., Bezjak S., Gothlin Culjak T., Barcic J.. Combinations of several insecticides used for integrated control of Colorado potato beetle (Leptinotarsa decemlineata, Say., Coleoptera: Chrysomelidae). J Pest Sci, 2006, 79: 223-232.

[13]

Kabir K.E., Khan A.R., Mosaddik M.A.. Goniothalamin - a potent mosquito larvicide from Bryonopsis laciniosa L. J Appl Entomol, 2003, 127: 112-115.

[14]

Klaassen C.D., Amdur M.O., Doull J.. Casarett & Doull’s Toxicology - The Basic Science of Poison. 1996, New York: McGraw-Hill, USA, 35 68

[15]

Li G., Zhang X., Wang L.. The use of Bacillus thuringiensis on forest integrated pest management. J Forestry Res, 2001, 12(1): 51-54.

[16]

Li S.Y., Skinner A.C., Rideout T., Stone D.M., Crummey H., Holloway G.. Lethal and sublethal effects of a neem-based insecticide on balsam fir sawfly (Hymenoptera: Diprionidae). J Econ Entomol, 2003, 96: 35-42.

[17]

Maletta M., Henninger M., Holmstrom K., Hort T.. Potato leaf hopper control and plastic mulch culture in organic potato production. HortTechnol, 2006, 16: 199-204.

[18]

Morris O.N.. Susceptibility of the spruce budworm, Choristoneura fumiferana, and the white-marked tussock moth, Orgyia leucostigmata, to Bacillus thuringiensis: chemical insecticide combinations. J Inverteb Pathol, 1975, 26: 193-198.

[19]

Muthukrishnan J., Seifert K., Hoffmann K.H., Lorenz M.W.. Inhibition of juvenile hormone biosynthesis in Gryllus bimaculatus by Glycosmis pentaphylla leaf compounds. Phytochemistry, 1999, 50: 249-54.

[20]

Nigam P.C.. Prebble R.L.. Chemical insecticides. Aerial Control of Forest Insects in Canada. 1975, Ottawa: Department of the Environment, Canada, 8 24

[21]

Poland T.M., Haack R.A., Petrice T.R., Miller D.L., Bauer L.S.. Laboratory Evaluation of the Toxicity of Systemic Insecticides for Control of Anoplophora glabripennis and Plectrodera scalator (Coleoptera: Cerambycidae). J Econ Entomol, 2006, 99(1): 85-93.

[22]

Preisler H.K., Robertson J.L.. Analysis of time dose-mortality data. J Econ Entomol, 1989, 82: 1534-1542.

[23]

Robertson J.L., Preisler H.K.. Robertson J.L., Russell R.M., Preisler H.K., Savin N.E.. Experimental design of bioassays. Pesticide bioassays with arthropods. 1992, Boca Raton: CRC Press, FL, 21 32

[24]

Schmutterer H.. Some properties and components of the neem tree (Azadirachta indica) and their use in pest control in developing countries. Meded Fac bouwwet-Rijksuniv Gent, 1981, 46: 30-47.

[25]

Shea P.J., Nigam P.C.. Schmitt D.M., Grimble D.G., Searcy J.L.. Chemical control. Spruce Budworm Handbook: Managing the Spruce Budworm in Eastern North America. 1984, Washington: US Department of agriculture, USA, 115 132

[26]

Sheppard D.C., Swedlund B.. Toxicity of individual pyrethrin esters to house flies (Diptera: Muscidae). J Entomol Sci, 2000, 35(3): 279-282.

[27]

Talerico R.L.. Talerico R.L., Montgomery M.. Summary of life history and hosts of the spruce budworms. Proceedings, Forest Defoliator-Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworm. 1983, Washington: US Department of Agriculture, Forest Service, USA, 1 4

[28]

Tang Q., Feng M.. DPS data process system for practical statistics. 1997, Beijing: China Science Press, 300 450

[29]

Weihman S.W., Liburd O.E.. Mating disruption and attract-and-kill as reduced-risk strategies for control of grape root borer Vitacea polistiformis(Lepidoptera: sesiidae) in Florida vineyards. Flo Entomol, 2006, 89(2): 245-250.

[30]

Zapata N., Budia F., Viñuela E., Medina P.. Laboratory evaluation of natural pyrethrins, pymetrozine and triflumuron as alternatives to control Ceratitis capitata adults. Phytoparasitica, 2006, 34(4): 420-427.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/