Genetic transformation of loblolly pine using mature zygotic embryo expiants byAgrobacterium tumefaciens

Tang Wei

Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (4) : 215 -222.

PDF
Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (4) : 215 -222. DOI: 10.1007/BF02844964
Article

Genetic transformation of loblolly pine using mature zygotic embryo expiants byAgrobacterium tumefaciens

Author information +
History +
PDF

Abstract

Agrobacterium tumefaciens strain LBA 4404 carrying pBI121 plasmid was used to transform mature zygotic embryos of three genotypes (E-Hb, E-Ma, and E-Mc) of loblolly pine. The results demonstrated that the expression frequency of β-glucuronidase reporter gene (GUS) varied among genotypes after mature zygotic embryos were infected withAgrobacterium tumefaciens cultures. The highest frequency (27.8%) of GUS expressing embryos was obtained from genotype E-Mc with mean number of 21.9 blue GUS spots per embryo. Expression of β-glucuronidase reporter gene was observed on cotyledons, hypocotyls, and radicles of transformed mature zygotic embryos, as well as on organogenic callus and regenerated shoots derived from co-cultivated mature zygotic embryos. Nineteen regenerated transgenic plants were obtained from GUS expression and kanamycin resistant calli. The presence and integration of the GUS gene was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. These results suggested that an efficientAgrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and that this transformation system could be useful for the future studies on transferring economically important genes to loblolly pine.

Keywords

Pinus taeda L. / Genetic transformation / Agrobacterium tumefaciens / β-glucuronidase gene / Polymerase chain reaction / Southern blot

Cite this article

Download citation ▾
Tang Wei. Genetic transformation of loblolly pine using mature zygotic embryo expiants byAgrobacterium tumefaciens. Journal of Forestry Research, 2000, 11(4): 215-222 DOI:10.1007/BF02844964

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bekkaoui F., Pilon M., Laine E., Raju D.S.S., Crosby W.L., Dunstan D.I. Transient gene expression in electroporatedPicea glauca protoplasts [J]. Plant Cell Rep., 1988, 7: 481-484.

[2]

Bergmann B.A, Stomp A.M. Effect of host plant genotype and growth rate onAgrobacterium tumefa-ciens-mediated gall formation inPinus radiata [J]. Phytopathology, 1992, 82: 1457-1462.

[3]

Bommineni V.R, Chibbar R.N, Dalta RSS, Tsang E.W.T. Transformation of white spruce (Picea glauca) somatic embryos by microprojectile bombardment [J]. Plant Cell Rep., 1993, 13: 17-23.

[4]

Charset PJ, Michel, M, F. 1991, Basic of plant genetic engineering and its potential application to tree species [R]. Petawawa National Forestry Institute, Forestry Canada, Information Report PI-X-104:48.

[5]

Charest P.J., Devantier Y, Lachance D. Stable genetic transformation of Picea mariana (black spruce) via mocroprojectile bombardment [J]. Vitro Cell Dev Biol., 1996, 32: 91-99.

[6]

Clapha D.H, Ekberg I. Induction of tumours by various strains ofAgrobacterium tumefaciens onAbies nordmanniana andPicea abies [J]. Scand J For Res, 1986, 1: 435-437.

[7]

Diner A.M, Karnosky D.F. Differential responses of two conifers to in vitro inoculation with Agrobacterium rhizogenes [J]. Eur J For Path., 1987, 17: 211-216.

[8]

Ellis D.D, McCabe D.E., Mcinnis S., Ramachandran R., Russell D.R., Wallace K.M., Martinell B.J, Roberts D.R., Raffa K.F., McCown B.H. Stable transformation of Picea glauca by particle acceleration [J]. Biotechnology, 1993, 11: 84-89.

[9]

Ellis D., Roberts D., Sutton B., Lazaroff W, Webb D., Flinn B. Transformation of white spruce and other conifer species byAgrobacterium tumefaciens [J]. Plant Cell Rep, 1989, 8: 16-20.

[10]

Godwin I, Gordon T, Ford-lloyd B., Newbury H.J. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species [J]. Plant Cell Rep., 1991, 9: 671-675.

[11]

Gupta P.K, Dandekar A.M., Durzan D.J. Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts [J]. Plant Sci., 1988, 58: 85-92.

[12]

Gupta P.K, Pullman G., Timmis R., Kreitinger M., Carlson WC, Grob J., Welty E. Forestry in the 21st Century: The biotechnology of somatic embryogenesis [J]. Bio / Technology, 1993, 11: 454-459.

[13]

Huang Y, Diner A.M, Karnosky D.F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix deciduas [J]. Vitro Cell Dev Biol., 1991, 27: 201-207.

[14]

Humara J.M, Lopez M., Ordas R.J. Agrobacterium rhizogenes-rnediated transformation ofPinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer [J]. Plant Cell Rep., 1999, 19: 51-58.

[15]

James, C, Krattiger, A.F. 1996. Global review of the field testing and commercialisation of transgenic plants [R]. ISAAA Briefs No 1.

[16]

James D.J, Uratsu S., Cheng J., Negri P., Viss P., Dandekar A.M. Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple [J]. Plant Cell Rep., 1993, 12: 559-563.

[17]

Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. EMBO J., 1987, 6: 3901-3907.

[18]

Klimaszewska K., Devantier Y, Lachance D., Lelu M.A., Charest P.J. Larix lancina (tamarack): somatic embryogenesis and genetic transformation [J]. Can J For Res., 1997, 27: 538-550.

[19]

Levee V, Lelu M.A., Jouanin L., Cornu D., Pilate G. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi (L. decidua)) and transgenic plant regeneration [J]. Plant Cell Rep., 1997, 16: 680-685.

[20]

McAfee B.J, White E.E., Pelcher L.E., Lapp M.S. Root induction in pine (Pinus) and larch (Larix) spp. UsingAgrobacterium rhizogenes [J]. Plant Cell, Tiss Org Cult., 1993, 34: 53-62.

[21]

Morris J.W., Castle L.A., Morris R.O. Efficacy of differentAgrobacterium tumefaciens strains in transformation of pinaceous gymnosperms [J]. Physiol. Mol Plant Patho., 1989, 34: 451-461.

[22]

Robertson D., Weissinger A.K., Ackley R., Glover S., Sederoff R.R. Genetic transformation of Norway spruce[Piceaabies (L.) Karst] using somatic embryo explants by microjectile bombardment [J]. Plant Mol. Biol., 1992, 19: 925-935.

[23]

Sambrook, J., Fritsch, E.F., Mamiatis, T. 1989. Molecular Cloning: a laboratory manual [M]. 2nd ed., Cold Spring Harbor, NY. USA.

[24]

Sarmento G.G., Alpert K., Tang F.A., Punja Z.K. Factors influencingAgrobacterium tumefaciens-mediated transformation and expression of kanamycin resistance in pickling cucumber [J]. Plant Cell, Tissue Organ Cult., 1992, 31: 185-193.

[25]

Sederoff R., Stomp A.M., Chilton W.S., Moore L.W. Gene transfer into loblolly pine byAgrobacterium tumefaciens [J]. Biotechnilogy, 1986, 4: 647-649.

[26]

Sheikholeslam S.N., Weeks D.P. Acetosyringone promotes high frequency transformation ofArabidopsis thaliana expiants byAgrobacterium tumefaciens [J]. Plant Mol Bid., 1987, 8: 291-298.

[27]

Shin D.I., Podila G.K., Huang Y, Karnosky D.F Transgenic larch expressing genes for herbicide and insect resistance [J]. Can. J. For. Res., 1994, 24: 2059-2067.

[28]

Stachel S.E., Messens E., Montague M.V., Zambryski P. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens [J]. Nature, 1985, 318: 624-629.

[29]

Stomp A.M., Weissinger A., Sederoff R.R. Transient expression from microprojectile-mediated DNA transfer inPinus taeda [J]. Plant Cell Rep., 1991, 10: 187-190.

[30]

Stomp A.M., Loopstra C, Chilton W.S., Sederoff R.R., Moore L.W. Extended host range of Agrobacterium tumefaciens in the genusPinus [J]. Pant Physiol., 1990, 92: 1226-1236.

[31]

Tang W., Ouyang F., Guo Z.C. Plant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine [J]. Plant Cell Rep., 1998, 17: 557-560.

[32]

Tzfira T., Yamitzky O., Vainstein A., Altman A. Agrobacterium rhizogenes-mediated DNA transfer inPinus halepensis Mill [J]. Plant Cell Rep., 1996, 16: 26-31.

[33]

Wagner D. B., Furnier G. R., Saghai-Maroof M.A., Williams S.M., Dancik B.W., Allard R.W. Chloroplast DNA polymorphisms in lodgepole and jack pine and their hybrids [J]. Proc Natl Acad Sci USA, 1987, 84: 2097-2100.

[34]

Walter C, Grace L.J., Wagner A., White D.W.R, Waiden A.R., Donaldson S.S., Hinton H., Gardner R.C, Smith D.R. Stable transformation and regeneration of transgenic plants ofPinus radiata D.Don [J]. Plant Cell Rep., 1998, 17: 460-469.

[35]

Walter C, Grace L, Donaldson S.S., Moody J., Gemmell J.E., van der Maos S., Kvaalen H., Lonneborg A. An efficient Biolistic transformation protocol forPicea abies embryogenic tissue and regeneration of transgenic plants [J]. Can. J. For Res., 1999, 29: 1539-1546.

[36]

Wenck A.R., Quinn M., Whetten R.W., Pullman G., Sederoff R. High-efficiencyAgrobacterium- mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda) [J]. Plant Mol. Biol., 1999, 39: 407-416.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/