High-speed pHEMT-based low noise amplifier for 2.4-GHz wireless communication

Omar S. Abdulwahid , Ahmad N. Abdulfattah , Saad G. Muttlak , Mohammadreza Sadeghi , Mohamed Missous

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) : 100338

PDF (5960KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) :100338 DOI: 10.1016/j.jnlest.2025.100338
research-article

High-speed pHEMT-based low noise amplifier for 2.4-GHz wireless communication

Author information +
History +
PDF (5960KB)

Abstract

In the era of rapidly expanding wireless technologies, the push for larger spectrum efficiency and better signal integrity has intensified the need for high-efficient and low noise amplifiers (LNAs). A two-stage LNA based on the GaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) with a relatively large gate length of 2 μm is designed for high-performance 2.4-GHz wireless communication. The I-V characteristic and two-port high-frequency S-parameter of the transistor are measured by on-wafer probing techniques. The results indicate that a discrete transistor with a gate size of 2 μm × 50 μm can provide a maximum transconductance of 16 ​mS, corresponding to a maximum current-gain cut-off frequency of 7 GHz and maximum oscillation frequency of 8 ​GHz at the 1-V drain-source voltage. With the impedance matching networks based transmission line technique, an extended integrated layout structure is designed and simulated by using the momentum simulation tool embedded in Advanced Design System, to alleviate the trade-off between noise figure (NF) and gain of the circuit. The findings show that the transistor based on the GaAs/InGaAs technology is capable of delivering high performance with power consumption low to 16 ​mW, where the maximum simulated gain of 21.5 dB and minimum NF of 2.4 ​dB are achieved. In terms of linearity, the proposed LNA provides terrific output 1-dB compression of −3 dBm ​and output third-order intercept point values of 10 dBm. The bandwidth of 0.12 ​GHz and figure-of-merit of 12 are obtained, which are comparable to that of existing LNAs based on pHEMT. Such a device may benefit to accelerate the development of more robust and power-efficient front-end modules in modern wireless systems, especially for advancing performance-driven applications.

Keywords

Low noise amplifier / Noise figure / pHEMT characterization / Transistor modeling / Wireless communication

Cite this article

Download citation ▾
Omar S. Abdulwahid, Ahmad N. Abdulfattah, Saad G. Muttlak, Mohammadreza Sadeghi, Mohamed Missous. High-speed pHEMT-based low noise amplifier for 2.4-GHz wireless communication. Journal of Electronic Science and Technology, 2025, 23(4): 100338 DOI:10.1016/j.jnlest.2025.100338

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X.-Y. Wang, T. Men, B.-W. Cheng, A 6–18 GHz low-noise amplifier with 19 dBm OP1dB and 2.6±0.3 dB NF in 0.15 μm GaAs process, Electronics 14 (8) (2025) 1600.

[2]

X. Yan, H.-R. Luo, J.-Y. Zhang, S.-P. Gao, Y.-X. Guo, A 9-to-42-GHz high-gain low-noise amplifier using coupled interstage feedback in 0.15-μm GaAs pHEMT technology, IEEE T. Circuits-I 70 (4) (2023) 1476-1488.

[3]

Y. Park, K. Choe, S. Jeon, A 6.1-to-41.5 GHz CMOS low-noise amplifier for wideband and highly linear applications, J. Electromagn. Eng. Sc. 25 (2) (2025) 154-159.

[4]

Y.-M. Yu, J.-H. Zhu, Z.-R. Zong, et al., A 21-to-41-GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications, IEEE T. Circuits-II 68 (6) (2021) 1857-1861.

[5]

Y.-P. Cui, K.-X. Ma, K.-J. Hu, An ultra-wideband low-noise amplifier with a new cross-coupling noise-canceling technique for 28 nm CMOS technology, Electronics 14 (10) (2025) 1904.

[6]

D.N. Jatoth, P. Gorre, M.P. Gupta, S. Kumar, A. Al-Shidaifat, H. Song, A 28 nm CMOS low-noise amplifier with novel redundant noise cancellation technique beyond ultra-wideband for 6G-based wireless systems, AEU-Int. J. Electron. C. 174 (2024) 155054.

[7]

B.-Q. Guo, J. Chen, A mm-wave two-stage CMOS LNA using noise cancelling and post-distortion techniques, in: Proc. of the 19th European Microwave Integrated Circuits Conf., Paris, France, 2024, pp. 407-410.

[8]

R.-H. Yin, Z.-H. Zhang, H.-C. Xiong, G. Zhang, A 2.4-GHz fully-integrated GaAs pHEMT front-end receiver for WLAN and Bluetooth applications, Appl. Sci. 13 (1) (2022) 65.

[9]

J.-T. Son, H.-W. Choi, C.-Y. Kim, Sub-6 GHz LNA using two-stage SNIM with series interstage inductor based on 0.5-μm GaAs E-pHEMT technology, IEEE Microw. Wirel. Tech. 33 (9) (2023) 1301-1304.

[10]

X. Yan, H.-R. Luo, J.-Y. Zhang, H. Zhang, Y.-X. Guo, Design and analysis of a cascode distributed LNA with gain and noise improvement in 0.15-μm GaAs pHEMT technology, IEEE T. Circuits-II 69 (12) (2022) 4659-4663.

[11]

M. Sakalas, P. Sakalas, Design of a wideband, 4–42.5 GHz low noise amplifier in 0.25 μm GaAs pHEMT technology, in: Proc. of the IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium, Monterey, USA, 2020, pp. 1-4.

[12]

Z. Yang, K.-S. Wang, Y.-H. Fan, Y.-P. Yan, X.-X. Liang, Design of a GaAs-based Ka-band low noise amplifier MMIC with gain flatness enhancement, Electronics 12 (10) (2023) 2325.

[13]

S.-H. Han, D.-W. Kim, W-band low-noise amplifier with improved stability using dual RC traps in bias networks on a 0.1 μm GaAs pHEMT process, Micromachines 16 (2) (2025) 219.

[14]

Z.-K. Li, J.-X. Chen, S.-D. Zheng, W. Hong, A 66–112.5 GHz low noise amplifier with minimum NF of 3.9 dB in 0.1-μm GaAs pHEMT technology, J. Infrared Millim. W. 43 (2) (2024) 187-191.

[15]

A. Jarndal, L. Arivazhagan, E. Almajali, S. Majzoub, T. Bonny, S. Mahmoud, Impact of AlGaN barrier thickness and substrate material on the noise characteristics of GaN HEMT, IEEE J. Electron Devi. 10 (2022) 696-705.

[16]

Y.-J. Wang, L.-X. Wan, Z.-L. Wang, et al., An X-band state adjustable low noise amplifier using current reuse technique, Electronics 12 (3) (2023) 696.

[17]

T.H. Ergin, U. Tuncel, S. Topaloglu, H.A. Ülkü, Design and analysis of 3–12 GHz UWB flat gain LNA in 0.15 μm GaAs pHEMT technology, Electronics 14 (16) (2025) 3272.

[18]

R.-W. Fan, B.-Q. Guo, H.-F. Wang, H.-S. Wang, J. Chen, A broadband single-ended active-feedforward-noise-canceling LNA with IP2 enhancement in stacked n/pMOS configurations, Microelectron. J. 149 (2024) 106257.

[19]

C. Poole, R. Grammenos, Correct equations for minimum noise measure of a microwave transistor amplifier, IEEE T. Microw. Theory 70 (2) (2022) 1361-1366.

[20]

B. Prameela, A.E. Daniel, Design of low noise amplifier for IEEE standard 802.11b using cascode and modified cascode techniques, Procedia Technol. 25 (2016) 443-449.

[21]

A. Prescod, B.B. Dingel, N. Madamopoulos, Super-linear modulator with extended bandwidth capability for broadband access applications, in: Proc. of SPIE 7234, Broadband Access Communication Technologies III, San Jose, USA, 2009, pp. 103-110.

[22]

T.S. Reddy, V. Nath, 2.4 GHz low noise amplifier: a comprehensive review and pioneering research contributions for RF applications, Microwave Review 30 (1) (2024) 55-66.

[23]

R. Ramzan, F. Zafar, S. Arshad, Q. Wahab, Figure of merit for narrowband, wideband and multiband LNAs, Int. J. Electron. 99 (11) (2012) 1603-1610.

[24]

R. Mahmou, K. Faitah, Design of a low power low-noise amplifier with improved gain/noise ratio, World J. Eng. Technol. 12 (1) (2024) 80-91.

[25]

R. Vignesh, P. Gorre, S. Kumar, A novel wide bandwidth FBSSIR integrated low noise amplifier for satellite navigational receiver system, Microelectron. J. 117 (2021) 105288.

[26]

A. Aneja, X.-J. Li, P.H.J. Chong, Design and analysis of a 1.1 and 2.4 GHz concurrent dual-band low noise amplifier for multiband radios, AEU-Int. J. Electron. C. 134 (2021) 153654.

[27]

F. El Hardouzi, M. Lahsaini, B. Nasiri, M. Bahich, Y. Achaoui, Design of a broadband LNA with multifunction circuitry based on composite right/left handed transmission lines for impedance matching and suppression of unwanted frequencies, Results Eng. 23 (2024) 102838.

[28]

H.-F. Liu, C.-J. Jin, Y. Cao, H.-Q. Gan, High linearity, low noise, L-band cryogenic amplifier for radio astronomical receivers, Microw. Opt. Technol. Lett. 59 (3) (2017) 500-505.

[29]

M.-W. Zhang, Z.-Q. Cheng, T.-W. Gong, B.-J. Zheng, Z.-W. Zhang, X.-F. Xuan, Design of a dual-band low-noise amplifier with a novel matching structure, Micromachines 16 (8) (2025) 938.

[30]

A.H. Jarndal, A.M. Bassal, A broadband hybrid GaN cascode low noise amplifier for WiMax applications, Int. J. RF Microw. C. E. 29 (10) (2019) e21456.

[31]

B.-Q. Guo, A 0.2–6 GHz 65 nm CMOS active-feedback LNA with threefold balun-error correction and implicit post-distortion technique, in: Proc. of the IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, USA, 2025, pp. 451-454.

PDF (5960KB)

67

Accesses

0

Citation

Detail

Sections
Recommended

/