Recognition of intrapulse modulation mode in radar signal with BRN-EST

Yan Cheng , Ke Mei , Hao Zeng

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) : 100336

PDF (5091KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) :100336 DOI: 10.1016/j.jnlest.2025.100336
research-article

Recognition of intrapulse modulation mode in radar signal with BRN-EST

Author information +
History +
PDF (5091KB)

Abstract

Neural network-based methods for intrapulse modulation recognition in radar signals have demonstrated significant improvements in classification accuracy. However, these approaches often rely on complex network structures, resulting in high computational resource requirements that limit their practical deployment in real-world settings. To address this issue, this paper proposes a Bottleneck Residual Network with Efficient Soft-Thresholding (BRN-EST) network, which integrates multiple lightweight design strategies and noise-reduction modules to maintain high recognition accuracy while significantly reducing computational complexity. Experimental results on the classical low-probability-of-intercept (LPI) radar signal dataset demonstrate that BRN-EST achieves comparable accuracy to state-of-the-art methods while reducing computational complexity by approximately 50 ​%.

Keywords

Attention mechanism / Convolutional neural network / Low probability of intercept radar / Recognition of intrapulse modulation

Cite this article

Download citation ▾
Yan Cheng, Ke Mei, Hao Zeng. Recognition of intrapulse modulation mode in radar signal with BRN-EST. Journal of Electronic Science and Technology, 2025, 23(4): 100336 DOI:10.1016/j.jnlest.2025.100336

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Lan, M. Rosamilia, A. Aubry, A. De Maio, G.-S. Liao, FDA-MIMO transmitter and receiver optimization, IEEE Trans. Signal Process. 72 (2024) 1576-1589.

[2]

X.-J. Lu, W. Yi, L.-J. Kong, LPI-Based transmit resource scheduling for target tracking with distributed MIMO radar systems, IEEE Trans. Veh. Technol. 72 (11) (2023) 14230-14244.

[3]

C.-G. Shi, Z.-C. Tang, L.-T. Ding, J.-K. Yan, Multidomain resource allocation for asynchronous target tracking in heterogeneous multiple radar networks with nonideal detection, IEEE Trans. Aero. Electron. Syst. 60 (2) (2024) 2016-2033.

[4]

T. Chen, H. Tian, Y.-M. Liu, Y.-H. Xiao, B.-Y. Yang, Radar signal intra-pulse modulation recognition based on point cloud network, IEEE Signal Process. Lett. 32 (2025) 596-600.

[5]

E. Basar, Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G, IEEE Trans. Commun. 68 (5) (2020) 3187-3196.

[6]

J.-L. Xu, W. Su, M.-C. Zhou, Likelihood-ratio approaches to automatic modulation classification, IEEE T. Syst. Man Cy. C 41 (4) (2011) 455-469.

[7]

F.-X. Zhang, C.-B. Luo, J.-L. Xu, Y. Luo, F.-C. Zheng, Deep learning based automatic modulation recognition: models, datasets, and challenges, Digit. Signal Process. 129 (2022) 103650.

[8]

A. Swami, B.M. Sadler, Hierarchical digital modulation classification using cumulants, IEEE Trans. Commun. 48 (3) (2000) 416-429.

[9]

M.A. Hazar, N. Odabasioglu, T. Ensari, Y. Kavurucu, O.F. Sayan, Performance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels, Neural Comput. Appl. 29 (9) (2018) 351-360.

[10]

H. Milczarek, I. Djurović, C. Leśnik, J. Jakubowski, Automatic classification of frequency-modulated radar waveforms under multipath conditions, IEEE Sens. J. 23 (16) (2023) 18349-18361.

[11]

C.K. Kovach, M.A. Howard III, Decomposition of higher-order spectra for blind multiple-input deconvolution, pattern identification and separation, Signal Process. 165 (2019) 357-379.

[12]

P. Chu, L.-J. Xie, C.-J. Dai, Y.-R. Chen, Automatic modulation recognition for secondary modulated signals, IEEE Wirel. Commun. Le. 10 (5) (2021) 962-965.

[13]

L.-M. Pu, H.-C. Wu, K. Yan, Z.-G. Gao, X.-B. Wang, W.-D. Xiang, Novel three-hierarchy multiple-tag-recognition technique for next generation RFID systems, IEEE Trans. Wireless Commun. 19 (2) (2020) 1237-1249.

[14]

S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, S. Pollin, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors, IEEE T. Cogn. Commun. 4 (3) (2018) 433-445.

[15]

T. Huynh-The, V.-S. Doan, C.-H. Hua, Q.-V. Pham, T.-V. Nguyen, D.-S. Kim, Accurate LPI radar waveform recognition with CWD-TFA for deep convolutional network, IEEE Wirel. Commun. Le. 10 (8) (2021) 1638-1642.

[16]

Q. Tang, H.-H. Huang, Z. Chen, A novel approach for automatic recognition of LPI radar waveforms based on CNN and attention mechanisms, in: Proc. of the 2022 41st Chinese Control Conf, Hefei, China, 2022, pp. 6648-6653.

[17]

S. Xu, L.-T. Liu, Z.-K. Zhao, DTFTCNet: radar modulation recognition with deep time-frequency transformation, IEEE T. Cogn. Commun. 9 (5) (2023) 1200-1210.

[18]

W.-K. Jiang, Y. Li, M.-M. Liao, S.-F. Wang, An improved LPI radar waveform recognition framework with LDC-UNet and SSR-loss, IEEE Signal Process. Lett. 29 (2022) 149-153.

[19]

X.-X. Zhang, Y. Wang, H. Huang, Y. Lin, H.-T. Zhao, G. Gui, Few-shot automatic modulation classification using architecture search and knowledge transfer in radar-communication coexistence scenarios, IEEE Internet Things 11 (19) (2024) 32067-32078.

[20]

Z.-L. Zhang, Y. Li, Q.-H. Zhai, Y.-J. Li, M.-G. Gao, Few-shot learning for fine-grained signal modulation recognition based on foreground segmentation, IEEE T. Veh, Tech 71 (3) (2022) 2281-2292.

[21]

X. Han, S.-W. Chen, M. Chen, J.-C. Yang, Radar specific emitter identification based on open-selective kernel residual network, digit, Signal Process. 134 (2023) 103913.

[22]

Q.-H. Zhai, J.-B. Liu, Z.-L. Zhang, Y. Li, S.-F. Wang, A multialignment task-adaptive method for MFR mode recognition on few-shot open-set learning, IEEE Trans. Aero. Electron. Syst. 60 (6) (2024) 7559-7574.

[23]

L.-T. Liu, X.-Y. Li, Unknown radar waveform recognition system via triplet convolution network and support vector machine, Digit. Signal Process. 123 (2022) 103439.

[24]

T. Huynh-The, V.P. Hoang, J.W. Kim, M.-T. Le, M. Zeng, WaveNet: toward waveform classification in integrated radar-communication systems with improved accuracy and reduced complexity, IEEE Internet Things 11 (14) (2024) 25111-25123.

[25]

T. Huynh-The, N.C. Luong, H. Phan, D.B. da Costa, Q.-V. Pham, Improved waveform classification for integrated radar-communication 6G systems via convolutional neural networks, IEEE Trans. Veh. Technol. 73 (9) (2024) 13921-13925.

PDF (5091KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/