High-efficient single-phase, non-isolated, multi-input microinverter with common ground for photovoltaic systems

Anees Alhasi , Patrick Chi-Kwong Luk , Khalifa Aliyu Ibrahim , Zhenhua Luo

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) : 100335

PDF (12790KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (4) : 100335 DOI: 10.1016/j.jnlest.2025.100335
research-article

High-efficient single-phase, non-isolated, multi-input microinverter with common ground for photovoltaic systems

Author information +
History +
PDF (12790KB)

Abstract

Single-phase non-isolated microinverters used in photovoltaic (PV) systems commonly encounter two persistent challenges: High-frequency leakage current and fluctuating power delivery. This paper presents a novel single-phase, non-isolated multi-input microinverter topology with a common-ground structure that effectively eliminates ground leakage current without requiring additional active components. The proposed microinverter architecture integrates a dual-boost configuration and uses only four active switches. This is especially advantageous in terms of the component count, which is beneficial to enhance reliability, reduce cost, and simplify the overall system design. With one, two, or four PV inputs, it can operate without interruption under unbalanced voltage or partial shading and even if some inputs drop to zero. A tailored modulation scheme minimizes conduction losses while maintaining a stable direct-current (DC)-link voltage, and a decoupling capacitor efficiently absorbs the single-phase pulsating power, thus overcoming one major limitation in existing microinverter designs. By validating with a 1-kW GaN-based prototype, both the simulated and experimental results demonstrate its high efficiency, robustness, and practical suitability for cost-effective PV applications, with a peak efficiency value of 94.8%.

Keywords

Dual-boost / Leakage current elimination / Multiple input microinverter / Non-isolated / Photovoltaic / Single-boost

Cite this article

Download citation ▾
Anees Alhasi, Patrick Chi-Kwong Luk, Khalifa Aliyu Ibrahim, Zhenhua Luo. High-efficient single-phase, non-isolated, multi-input microinverter with common ground for photovoltaic systems. Journal of Electronic Science and Technology, 2025, 23(4): 100335 DOI:10.1016/j.jnlest.2025.100335

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Anees Alhasi: Conceptualization, Methodology, Mathematical modeling, Simulation, Writing–original draft, Visualization, Formal analysis, Data curation. Patrick Chi-Kwong Luk: Supervision, Validation, Writing–review & editing, Project administration, Funding acquisition, Conceptualization. Khalifa Aliyu Ibrahim: Investigation, Simulation, Resources, Writing–review & editing, Data curation. Zhenhua Luo: Validation, Resources, Formal analysis, Writing–review & editing.

Declaration of competing interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Acknowledgment

This research was supported by Libyan Cultural Affair/London, Libya under Grant No. 13840.

References

[1]

H. Dehghanitafti, G. Konstantinou, J. Fletcher, L. Callegaro, G. Farivar, J. Pou, Control of distributed photovoltaic inverters for frequency support and system recovery, IEEE T. Power Electr. 37 (4) (2022) 4742-4750.

[2]

V. Anand, V. Singh, J. Sathik, D. Almakhles, Single-stage five-level common ground transformerless inverter with extendable structure for centralized photovoltaics, CSEE J. Power Energy 9 (1) (2023) 37-49.

[3]

Z. An, X.-Y. Han, V.R. Chowdhury, J. Benzaquen, R.P. Kandula, D. Divan, A tri-port current-source soft-switching medium-voltage string inverter for large-scale solar-plus-storage farms, IEEE T. Power Electr. 37 (11) (2022) 13808-13823.

[4]

A.R. Paul, A. Bhattacharya, K. Chatterjee, A novel SEPIC-Ćuk-based high gain solar PV microinverter for grid integration, IEEE T. Ind. Electron. 70 (12) (2023) 12365-12375.

[5]

Ö. Çelik, A. Teke, A. Tan, Overview of micro-inverters as a challenging technology in photovoltaic applications, Renew. Sust. Energ. Rev. 82 (2018) 3191-3206.

[6]

X.-Q. Guo, H. Zhang, W. Tang, et al., Overview of recent advanced topologies for transformerless dual-grounded inverters, IEEE T. Power Electr. 37 (10) (2022) 12679-12704.

[7]

K. Alluhaybi, I. Batarseh, H.-B. Hu, Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters, IEEE J. Em. Sel. Top P. 8 (2) (2020) 1310-1329.

[8]

G.-B. Son, Z.-R. Huang, Q. Li, F.C. Lee, Analysis and control of critical conduction mode high-frequency single-phase transformerless PV inverter, IEEE T. Power Electr. 36 (11) (2021) 13188-13199.

[9]

H. Li, Y.-B. Zeng, B. Zhang, T.Q. Zheng, R.-X. Hao, Z.-C. Yang, An improved H5 topology with low common-mode current for transformerless PV grid-connected inverte, IEEE T. Power Electr. 34 (2) (2019) 1254-1265.

[10]

H.-L. Tian, W. Han, M.-L. Chen, G.-Z. Liang, Z.-X. Tang, Common-ground type switching step-up/step-down VSI for grid-connected PV system, IEEE T. Power Electr. 39 (8) (2024) 10390-10398.

[11]

V. Sonti, S. Jain, DC decoupling-based three-phase three-level transformerless PV inverter topology for minimization of leakage current, IEEE T. Ind. Electron. 66 (10) (2019) 8273-8278.

[12]

S. Naderi, H. Rastegar, A new non-isolated active quasi Z-source multilevel inverter with high gain boost, IEEE Access 11 (2023) 2941-2951.

[13]

A. Abdelhakim, P. Mattavelli, P. Davari, F. Blaabjerg, Performance evaluation of the single-phase split-source inverter using an alternative DC-AC configuration, IEEE T. Ind. Electron. 65 (1) (2018) 363-373.

[14]

S.S. Lee, S.T. Tan, D. Ishak, R. Mohd-Mokhtar, Single-phase simplified split-source inverter (S3I) for boost DC-AC power conversion, IEEE T. Ind. Electron. 66 (10) (2019) 7643-7652.

[15]

A. Sarikhani, M.M. Takantape, M. Hamzeh, A transformerless common-ground three-switch single-phase inverter for photovoltaic systems, IEEE T. Power Electr. 35 (9) (2020) 8902-8909.

[16]

A. Kumar, P. Sensarma, A four-switch single-stage single-phase buck-boost inverter, IEEE T. Power Electr. 32 (7) (2017) 5282-5292.

[17]

R. Ravitheja, M. Sahoo, P. Shaw, K. Thirumala, A four switch common ground-based single phase current-fed boost inverter, IEEE T. Power Electr. 40 (1) (2025) 1064-1073.

[18]

N.M. Ho, K.M. Siu, Manitoba inverter-single-phase single-stage buck-boost VSI topology, IEEE T. Power Electr. 34 (4) (2019) 3445-3456.

[19]

A.A. Khan, Y.-W. Lu, W. Eberle, et al., Single-stage bidirectional buck-boost inverters using a single inductor and eliminating the common-mode leakage current, IEEE T. Power Electr. 35 (2) (2020) 1269-1281.

[20]

R. Za’Im, J. Jamaludin, N.A. Rahim, Photovoltaic flyback microinverter with tertiary winding current sensing, IEEE T. Power Electr. 34 (8) (2019) 7588-7602.

[21]

F. Zhang, Y.-X. Xie, Y.-S. Hu, G. Chen, X.-M. Wang, A hybrid boost-flyback/flyback microinverter for photovoltaic applications, IEEE T. Ind. Electron. 67 (1) (2020) 308-318.

[22]

A.D. Ibrahim, M.A. Gaafar, M. Orabi, A. Sheir, M.Z. Youssef, A novel dual-input high-gain transformerless multilevel single-phase microinverter for PV systems, IEEE T. Power Electr. 35 (5) (2020) 4703-4714.

[23]

Q.-Y. Huang, A.Q. Huang, R.-Y. Yu, P.-K. Liu, W.-S. Yu, High-efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with GaN AC switches, IEEE T. Power Electr. 34 (8) (2019) 7474-7488.

[24]

K. Alluhaybi, H.-B. Hu, I. Batarseh, Design and implementation of dual-input microinverter for PV-battery applications, in: Proc. of IEEE Applied Power Electronics Conf. and Exposition, New Orleans, USA, (2020), pp. 1467-1474.

[25]

K.-S. Mu, C.-J. Fei, X.-F. Hu, H. Xu, Dual input step-up inverter with low leakage current for PV generation applications, J. Power Electron. 22 (12) (2022) 1991-2003.

[26]

Z.-L. Yao, Topology review of doubly grounded transformer-less single-phase inverters, IET Power Electron. 16 (6) (2023) 1077-1090.

[27]

L.-W. Zhou, F. Gao, T. Xu, Implementation of active NPC circuits in transformer-less single-phase inverter with low leakage current, IEEE T. Ind. Appl. 53 (6) (2017) 5658-5667.

[28]

C.-Q. Xiao, W.-M. Wu, Q.-K. Guo, et al., A novel single-phase nonisolated dual-input microinverter with active power decoupling, IEEE T. Power Electr. 40 (3) (2025) 4437-4448.

AI Summary AI Mindmap
PDF (12790KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/