MWIR narrowband filter based on guided-mode resonance subwavelength structure

He-Zhuang Liu , Jiang Wu

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100313

PDF (1090KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100313 DOI: 10.1016/j.jnlest.2025.100313
research-article

MWIR narrowband filter based on guided-mode resonance subwavelength structure

Author information +
History +
PDF (1090KB)

Abstract

This work proposes a novel design for a narrowband filter operating in the mid-wave infrared (MWIR) spectrum. The filter is designed with a single layer of slab waveguide decorated with ariy layer of gold grating arrays. This design demonstrates superior narrowband transmission properties within the MWIR range, which can be explained in the framework of guided-mode resonance (GMR). Since MWIR spectral data is crucial for identifying the chemical fingerprint of man-made objects and natural materials, the GMR filters hold great potential in integration with commercial MWIR photodetectors and focal plane arrays (FPAs) and addressing the market's demand for ultra-compact spectral detection solutions. Theoretical studies have investigated the influential parameters in the GMR filter design and provided the methods towards optimal filtering performance. The center wavelength of these transmission filters exhibits significant tunability, spanning from 3 ​μm to 5 ​μm across the MWIR spectrum, while the full width at half maximum (FWHM) exhibits remarkable variability, ranging from 5.7 ​nm to 101.0 ​nm, enabling the attainment of desired filter performance contingent upon judicious waveguide material selection and optimized structural design. This work forges a path toward integrating multifunctional capabilities into ultra-compact MWIR sensors.

Keywords

Guided-mode resonance (GMR) filter / Mid-wave infrared (MWIR) / Narrowband filter / Subwavelength structure / Ultra-thin

Cite this article

Download citation ▾
He-Zhuang Liu, Jiang Wu. MWIR narrowband filter based on guided-mode resonance subwavelength structure. Journal of Electronic Science and Technology, 2025, 23(2): 100313 DOI:10.1016/j.jnlest.2025.100313

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

He-Zhuang Liu: Investigation, Data curation, Writing–original draft. Jiang Wu: Formal analysis, Project administration, Writing–review & editing.

Declaration of competing interest

The authors declared that they have no conflicts of interest to this work.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2019YFB2203400 and the National Natural Science Foundation of China under Grant No. 61974014.

References

[1]

M.S. de Cumis, S. Viciani, S. Borri, et al., Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring, Opt. Express 22 (23) (2014) 28222-28231.

[2]

B. Pejcic, M. Myers, A. Ross, Mid-infrared sensing of organic pollutants in aqueous environments, Sensors 9 (8) (2009) 6232-6253.

[3]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade, Near- and mid-infrared laser monitoring of industrial processes, environment and security applications, Opt. Laser Eng. 44 (7) (2006) 699-710.

[4]

D. Tyagi, H.-D. Wang, W.-C. Huang, et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications, Nanoscale 12 (6) (2020) 3535-3559.

[5]

V. Kumar, J.K. Ghosh, Camouflage detection using MWIR hyperspectral images, J. Indian Soc. Remote 45 (1) (2017) 139-145.

[6]

J.A. Hackwell, D.W. Warren, R.P. Bongiovi, et al., LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing, in: Proc. of SPIE 2819, Imaging Spectrometry II, Denver, USA, (1996), pp. 102-107.

[7]

T. Svensson, I.G.E. Renhorn, Multispectral MWIR imaging sensor, in: Proc. of SPIE 4820, Infrared Technology and Applications XXVIII, Seattle, WA, USA, (2003), pp. 116-125.

[8]

F.D. Shepherd, J.M. Mooney, T.E. Reeves, P. Dumont, M.M. Weeks, S. DiSalvo, Adaptive MWIR spectral imaging sensor, in: Proc. of SPIE 7055, Infrared Systems and Photoelectronic Technology III, San Diego, USA, (2008), pp. 705506:1-8.

[9]

Z.-Y. Yang, T. Albrow-Owen, W.-W. Cai, T. Hasan, Miniaturization of optical spectrometers, Science 371 (6528) (2021) eabe0722.

[10]

L.-M. Yuan, J.-M. Liao, A.-B. Ren, et al., Ultra-narrow-band infrared absorbers based on surface plasmon resonance, Plasmonics 16 (4) (2021) 1165-1174.

[11]

S.-H. Liu, Z.-J. Zhao, F.-Y. Xu, et al., Design of an Au–Pt–Ti wire-grid polarizer based on midinfrared pixelated micropolarizer arrays, Opt. Eng. 62 (3) (2023) 037104.

[12]

Z.-Y. Li, S. Butun, K. Aydin, Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films, ACS Photonics 2 (2) (2015) 183-188.

[13]

E.-W. Li, X.-Y. Chong, F.-H. Ren, A.X. Wang, Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array, Opt. Lett. 41 (9) (2016) 1913-1916.

[14]

P. Gonzalez, J. Pichette, B. Vereecke, et al., An extremely compact and high-speed line-scan hyperspectral imager covering the SWIR range, in: Proc. of SPIE 10656, Image Sensing Technologies: Materials, Devices, Systems, and Applications V, Orlando, USA, (2018), pp. 1-9. 106560L.

[15]

P.B. Catrysse, Integration of optical functionality for image sensing through sub-wavelength geometry design, in: Proc. of SPIE 9481, Image Sensing Technologies: Materials, Devices, Systems, and Applications II, Baltimore, USA, (2015), pp. 1-8. 948102.

[16]

M. Meinig, S. Kurth, M. Seifert, et al., Tunable Fabry-Pérot interferometer with subwavelength grating reflectors for MWIR microspectrometers, in: Proc. of SPIE 9759, Advanced Fabrication Technologies forMicro/Nano Optics and Photonics IX, San Francisco, USA, (2016), pp. 1-14. 97590W.

[17]

K.D. Hakkel, M. Petruzzella, F. Ou, et al., Integrated near-infrared spectral sensing, Nat. Commun. 13 (1) (2022) 103.

[18]

G. D'Aguanno, N. Mattiucci, M.J. Bloemer, D. De Ceglia, M.A. Vincenti, A. Alù, Transmission resonances in plasmonic metallic gratings, J. Opt. Soc. Am. B 28 (2) (2011) 253-264.

[19]

F.-H. Ren, K.Y. Kim, X.-Y. Chong, A.-X. Wang, Effect of finite metallic grating size on Rayleigh anomaly-surface plasmon polariton resonances, Opt. Express 23 (22) (2015) 28868-28873.

[20]

X.-G. Luo, Subwavelength artificial structures: opening a new era for engineering optics, Adv. Mater. 31 (4) (2019) 1804680.

[21]

P.-T. Dang, J.H. Lee, Optimally designed narrowband guided-mode resonance transmittance filters for label-free optical biosensor, in: Proc. of SPIE 11276, Optical Components and Materials XVII, San Francisco, USA, (2020), pp. 1-6. 112761K.

[22]

C.-T. Wang, H.-H. Hou, P.-C. Chang, et al., Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating, Opt. Express 24 (20) (2016) 22892-22898.

[23]

M.J. Uddin, T. Khaleque, R. Magnusson, Guided-mode resonant polarization-controlled tunable color filters, Opt. Express 22 (10) (2014) 12307-12315.

[24]

Y.T. Yoon, H.S. Lee, S.S. Lee, S.H. Kim, J.D. Park, K.D. Lee, Color filter incorporating a subwavelength patterned grating in poly silicon, Opt. Express 16 (4) (2008) 2374-2380.

[25]

R. Magnusson, S.-S. Wang, New principle for optical filters, Appl. Phys. Lett. 61 (9) (1992) 1022-1024.

[26]

J.-N. Liu, M.V. Schulmerich, R. Bhargava, B.T. Cunningham, Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging, Opt. Express 22 (15) (2014) 18142-18158.

[27]

R.R. Boye, R.K. Kostuk, Investigation of the effect of finite grating size on the performance of guided-mode resonance filters, Appl. Opt. 39 (21) (2000) 3649-3653.

[28]

D.B. Mazulquim, K.J. Lee, J.W. Yoon, et al., Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly, Opt. Express 22 (25) (2014) 30843-30851.

[29]

I. Koirala, V.R. Shrestha, C.S. Park, S.S. Lee, D.Y. Choi, Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure, Sci. Rep.-UK 7 (2017) 40073.

[30]

M. Zaman, L.-G. Chen, S. Ang, Submicron guided-mode-resonance filter for wide bandwidth near-infrared polarizer, Opt. Eng. 59 (1) (2020) 014116.

AI Summary AI Mindmap
PDF (1090KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/