2D PdSe2: Pioneering innovations in polarized photodetection

Waqas Ahmad , Amine El Moutaouakil , Wen Lei , Zhi-Ming Wang

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100305

PDF
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100305 DOI: 10.1016/j.jnlest.2025.100305
research-article

2D PdSe2: Pioneering innovations in polarized photodetection

Author information +
History +
PDF

Abstract

Palladium diselenide (PdSe2), a novel two-dimensional (2D) material with a unique pentagonal crystal structure including anisotropic properties, has emerged as a highly promising candidate for developing the next generation photoelectronic devices. In this review article, firstly, we have shed light key figures of merit for polarization detection. After that, this review mainly highlights the structural and electronic properties of PdSe2 focusing on its strong polarization sensitivity, tunable bandgap, and excellent environmental stability, making it ideal for developing the photoelectronic devices such as broadband photodetectors and their further applications in polarization detection-based imaging systems. We also discuss challenges in scalable synthesis, material stability, and integration with other low dimensional materials, offering future research directions to optimize PdSe2 for commercial applications. Owing to the outstanding optoelectronic properties of PdSe2, it stands at the forefront of optoelectronic materials, poised to enable new innovations in polarization photodetection.

Keywords

Anisotropic property / Imaging system / PdSe2 / Pentagonal structure / Polarization detection

Cite this article

Download citation ▾
Waqas Ahmad, Amine El Moutaouakil, Wen Lei, Zhi-Ming Wang. 2D PdSe2: Pioneering innovations in polarized photodetection. Journal of Electronic Science and Technology, 2025, 23(2): 100305 DOI:10.1016/j.jnlest.2025.100305

登录浏览全文

4963

注册一个新账户 忘记密码

Credit authorship contribution statement

Waqas Ahmad: Writing–original draft, Visualization, Formal Analysis, Investigation, Conceptualization. Amine El Moutaouakil: Writing –original draft, Writing–review & editing. Wen Lei: Writing–review & editing, Formal Analysis. Zhi-Ming Wang: Writing –review & editing, Validation, Supervision.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2019YFB 2203400 and the “111 project” under Grant No. B20030.

Declaration of competing interest

Zhi-Ming Wang is the Editor-in-Chief of Journal of Electronic Science and Technology and was not involved in theeditorial review or the decision to publish this article. The other authors declare that there are no competing interests.

References

[1]

J.R. Schaibley, H.-Y. Yu, G. Clark, et al., Valleytronics in 2D materials, Nat. Rev. Mater. 1 (11) (2016) 16055.

[2]

W. Ahmad, L. Pan, K. Khan, L.-P. Jia, Q.-D. Zhuang, Z.-M. Wang, Progress and insight of van der Waals heterostructures containing interlayer transition for near infrared photodetectors, Adv. Funct. Mater. 33 (19) (2023) 2300686.

[3]

W. Ahmad, Z. Ullah, K. Khan, Stretchable photodetectors based on 2D materials: materials synthesis, fabrications and applications, FlatChem. 36 (2022) 100452.

[4]

R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond, Nanoscale 3 (1) (2011) 20-30.

[5]

S.H. Aleithan, U. Younis, Z. Alhashem, W. Ahmad, Graphene electrode-enhanced InSe/WSe2 van der Waals heterostructure for high-performance broadband photodetector with imaging capabilities, J. Alloys Compd. 1006 (2024) 176356.

[6]

R. Rong, Y. Liu, X.-C. Nie, et al., The interaction of 2D materials with circularly polarized light, Adv. Sci. 10 (10) (2023) 2206191.

[7]

W. Ahmad, M.U. Rehman, L. Pan, et al., Ultrasensitive near-infrared polarization photodetectors with violet phosphorus/InSe van der Waals heterostructures, ACS Appl. Mater. Interfaces 16 (15) (2024) 19214-19224.

[8]

W. Ahmad, J. Wu, Q.-D. Zhuang, A. Neogi, Z.-M. Wang, Research process on photodetectors based on group-10 transition metal dichalcogenides, Small 19 (16) (2023) 2207641.

[9]

W. Ahmad, J.-D. Liu, J.-Z. Jiang, et al., Strong interlayer transition in few-layer InSe/PdSe2 van der Waals heterostructure for near-infrared photodetection, Adv. Funct. Mater. 31 (43) (2021) 2104143.

[10]

X. Li, H.-Y. Liu, C.-M. Ke, et al., Review of anisotropic 2D materials: controlled growth, optical anisotropy modulation, and photonic applications, Laser Photon. Rev. 15 (12) (2021) 2100322.

[11]

H.-T. Yuan, X.-G. Liu, F. Afshinmanesh, et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction, Nat. Nanotechnol. 10 (8) (2015) 707-713.

[12]

H.-Y. Hou, S. Tian, H.-R. Ge, J.-D. Chen, Y.-Q. Li, J.-X. Tang, Recent progress of polarization-sensitive perovskite photodetectors, Adv. Funct. Mater. 32 (48) (2022) 2209324.

[13]

W. Ahmad, A. Abbas, U. Younis, J.-Y. Zhang, S.H. Aleithan, Z.-M. Wang, Advancements in optoelectronics: harnessing the potential of 2D violet phosphorus, Adv. Funct. Mater. 34 (52) (2024) 2410723.

[14]

K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, 2D materials and van der Waals heterostructures, Science 353, (6298) (2016), https://doi.org/10.1126/science.aac9439.

[15]

W. Ahmad, M.U. Rehman, U. Younis, et al., Interlayer charge transition and broadband polarization photodetection and imaging based on In2Se3/ReS2 van der Waals heterostructure, Laser Photon. Rev. 19 (1) (2025) 2400819.

[16]

W. Ahmad, A.K. Tareen, K. Khan, et al., A review of the synthesis, fabrication, and recent advances in mixed dimensional heterostructures for optoelectronic devices applications, Appl. Mater. Today 30 (2023) 101717.

[17]

A.D. Oyedele, S.-Z. Yang, L.-B. Liang, et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139 (40) (2017) 14090-14097.

[18]

Q.-J. Liang, Q.-X. Wang, Q. Zhang, et al., High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2, Adv. Mater. 31 (24) (2019) 1807609.

[19]

G. Li, S.-Q. Yin, C.-Y. Tan, et al., Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy, Adv. Funct. Mater. 31 (40) (2021) 2104787.

[20]

M.-Y. Wei, J. Lian, Y. Zhang, C.-L. Wang, et al., Layer-dependent optical and dielectric properties of centimeter-scale PdSe2 films grown by chemical vapor deposition, npj 2D Mater. Appl. 6 (1) (2022) 1.

[21]

Q.-Y. Hao, J.-R. Huang, J.-D. Liu, et al., Controllable phase transformation by van der Waals encapsulation in electrochemically exfoliated PdSe2 nanosheets, Adv. Funct. Mater. 34 (33) (2024) 2316733.

[22]

Y.-Y. Gu, L.-Z. Zhang, H. Cai, et al., Stabilized synthesis of 2D verbeekite: monoclinic PdSe2 crystals with high mobility and in-plane optical and electrical anisotropy, ACS Nano 16 (9) (2022) 13900-13910.

[23]

K.-C. Zhang, L.-Y. Cheng, C. Shen, Y.-F. Li, Y. Liu, Y. Zhu, Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe2, Phys. Chem. Chem. Phys. 23 (34) (2021) 18869-18884.

[24]

R. Tao, Z.-H. Yang, C. Tan, et al., Growth of Fe-doped and V-doped MoS2 and their magnetic-electrical effects, J. Electron. Sci. Technol. 20 (3) (2022) 100167.

[25]

Z.-C. Zhang, Q.-Y. Zhang, M. Hu, Simple ultrasonic-assisted clean graphene transfer, J. Electron. Sci. Technol. 20 (3) (2022) 100168.

[26]

C.-Y. Xie, S.-L. Jiang, Y.-L. Gao, et al., Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide, Small 16 (19) (2020) 2000754.

[27]

L.-H. Zeng, D. Wu, S.-H. Lin, et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications, Adv. Funct. Mater. 29 (1) (2019) 1806878.

[28]

W. Nishiyama, T. Nishimura, K. Ueno, T. Taniguchi, K. Watanabe, K. Nagashio, Quantitative determination of contradictory bandgap values of bulk PdSe2 from electrical transport properties, Adv. Funct. Mater. 32 (9) (2022) 2108061.

[29]

J.-H. Wu, H. Ma, C.-Y. Zhong, et al., Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range, Nano Lett. 22 (16) (2022) 6816-6824.

[30]

J.-L. Jian, J.-H. Wu, C.-Y. Zhong, et al., High-speed compact plasmonic-PdSe2 waveguide-integrated photodetector, ACS Photonics 10 (10) (2023) 3494-3501.

[31]

Z.-T. Shi, X.-Q. Qi, Z.-K. Zhang, et al., Facile synthesis of ZnO/PdSe2 core-shell heterojunction for efficient photodetector application, Chem. Eng. J. 413 (2021) 127484.

[32]

L.-J. Pi, C.-G. Hu, W.-F. Shen, et al., Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity, Adv. Funct. Mater. 31 (3) (2021) 2006774.

[33]

Q.-S. Guo, A. Pospischil, M. Bhuiyan, et al., Black phosphorus mid-infrared photodetectors with high gain, Nano Lett. 16 (7) (2016) 4648-4655.

[34]

X.-R. Zhang, M.-J. Dai, W.-J. Deng, Y.-Z. Zhang, Q.-J. Wang, A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts, Nanophotonics 12 (3) (2023) 607-618.

[35]

J.-H. Zhong, B. Wu, Y. Madoune, Y.-P. Wang, Z.-W. Liu, Y.-P. Liu, PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance, Nano Res. 15 (3) (2022) 2489-2496.

[36]

H. Zhang, B. Chang, Z.-Y. Li, et al., Coherent optical frequency combs: from principles to applications, J. Electron. Sci. Technol. 20 (2) (2022) 100157.

[37]

C.-D. Yin, S.-X. He, X.-F. Fan, Y.-K. Xiao, L.-C. Zhao, L.-M. Gao, Gate-modulated and polarization-sensitive photodetector based on the MoS2/PdSe2 out-of-plane van der Waals heterostructure, Adv. Opt. Mater. 12 (28) (2024) 2401122.

[38]

P. Wang, Z. Li, X. Xia, et al., Anisotropic Te/PdSe2 van der Waals heterojunction for self-powered broadband and polarization-sensitive photodetection, Small 20 (34) (2024) 2401216.

[39]

Y.-F. Ma, Y.-M. Wang, J. Wen, et al., Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells, J. Electron. Sci. Technol. 21 (1) (2023) 100189.

[40]

D. Wu, C. Jia, F. Shi, et al., Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing, J. Mater. Chem. A 8 (2020) 3632-3642.

[41]

Y.-S. Yang, S.C. Liu, X. Wang, et al., Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2, Adv. Funct. Mater. 29 (16) (2019) 1900411.

[42]

J. Bullock, M. Amani, J. Cho, et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature, Nat. Photonics 12 (10) (2018) 601-607.

[43]

D. Xiang, C. Han, Z.-H. Hu, et al., Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector, Small 11 (37) (2015) 4829-4836.

[44]

B. Ezhilmaran, A. Patra, S. Benny, et al., Recent developments in the photodetector applications of Schottky diodes based on 2D materials, J. Mater. Chem. C 9 (19) (2021) 6122-6150.

[45]

D. Wu, M. Xu, L. Zeng, et al., In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio, ACS Nano 16 (2022) 5545-5555.

[46]

E. Chen, W. Xu, J. Chen, J.H. Warner, 2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications, Mater. Today Adv. 7 (2020) 100076.

[47]

W. Ahmad, Y. Wang, J. Kazmi, U. Younis, et al., Janus 2D transition metal dichalcogenides: research progress, optical mechanism and future prospects for optoelectronic devices, Laser Photon. Rev., (2024), Article 2400341.

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/