Layer-2 transferable belief model: Manage uncertainty on random permutation sets

Qian-Li Zhou , Yong Deng

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100304

PDF (843KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (2) : 100304 DOI: 10.1016/j.jnlest.2025.100304
research-article

Layer-2 transferable belief model: Manage uncertainty on random permutation sets

Author information +
History +
PDF (843KB)

Abstract

In this paper, the transferable belief model established on power sets is extended to the permutation event space (PES) and is referred to as the layer-2 transferable belief model. Our goal is to provide a comprehensive approach for handling and modeling uncertainty, capable of representing both quantitative and qualitative information. First, the motivation for proposing the layer-2 transferable belief model and its information processing principles are explored from the perspective of weak propensity. Then, based on these principles, the corresponding information processing methods for the credal and pignistic levels are developed. Finally, the advantages of this model are validated through a classifier that leverages attribute fusion to enhance performance and decision-making accuracy.

Keywords

Evidence theory / Information processing / Information fusion / Layer-2 belief structure / Random permutation set

Cite this article

Download citation ▾
Qian-Li Zhou, Yong Deng. Layer-2 transferable belief model: Manage uncertainty on random permutation sets. Journal of Electronic Science and Technology, 2025, 23(2): 100304 DOI:10.1016/j.jnlest.2025.100304

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Qian-Li Zhou: Methodology, Investigation, Formal analysis, Data curation, Conceptualization, Writing – original draft, Review & editing. Yong Deng: Supervision, Validation, Visualization, Project administration.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 62373078.

References

[1]

W. Pedrycz, Evaluating quality of models via prediction information granules, IEEE Trans. Fuzzy Syst. 30 (12) (2022) 5551-5556.

[2]

H.-Y. E, Y. Cui, W. Pedrycz, A.R. Fayek, S. AbouRizk, Strategies for designing machine learning models in renewable energy with insufficient data, Energy 311 (2024) 133475.

[3]

J. Zhao, K.H. Cheong, MASE: multi-attribute source estimator for epidemic transmission in complex networks, IEEE T. Syst., Man, Cy.: S. 54 (6) (2024) 3308-3320.

[4]

J.-B. Yang, D.-L. Xu, Evidential reasoning rule for evidence combination, Artif. Intell. 205 (2013) 1-29.

[5]

A.E. Lepskiy, Analysis of information inconsistency in belief function theory. Part II: internal conflict, Control Sci 6 (2021) 2-12.

[6]

D. Dubois, H. Prade, Possibility theory in information fusion, in: Proc. of the Third Intl Conf, on Information Fusion, Paris, France, (2000), pp. 53-67.

[7]

B. Solaiman, É. Bossé, Possibility Theory for the Design of Information Fusion Systems, Springer, Cham, (2019).

[8]

T. Wen, K.H. Cheong, Parrondo’s paradox reveals counterintuitive wins in biology and decision making in society, Phys. Life Rev. 51 (2024) 33-59.

[9]

J.-B. Yang, D.-L. Xu, X.-B. Xu, C. Fu, Likelihood analysis of imperfect data, IEEE T. Syst., Man, Cy.: S. 53 (8) (2023) 5046-5057.

[10]

R.R. Yager, L.-P. Liu, Classic Works of the Dempster-Shafer Theory of Belief Functions, Springer, Berlin, (2008).

[11]

T. Wen, Y.-W. Chen, T.A. Syed, T. Wu, ERIUE: evidential reasoning-based influential users evaluation in social networks, Omega 122 (2024) 102945.

[12]

L.-Q. Huang, G.-S. Liu, Convolutional feature aggregation network with self-supervised learning and decision fusion for SAR target recognition, IEEE Trans. Instrum. Meas. 73 (2024) 2526714.

[13]

L.-Q. Huang, Z.-G. Liu, Q. Pan, J. Dezert, Evidential combination of augmented multi-source of information based on domain adaptation, Sci. China Inf. Sci. 63 (11) (2020) 210203.

[14]

F.-Y. Xiao, Z.-H. Cao, C.T. Lin, A complex weighted discounting multisource information fusion with its application in pattern classification, IEEE Trans. Knowl. Data Eng. 35 (8) (2023) 7609-7623.

[15]

L.-G. Fei, Y.-Q. Wang, An optimization model for rescuer assignments under an uncertain environment by using Dempster–Shafer theory, Knowl.-Based Syst. 255 (2022) 109680.

[16]

H.-C. Liao, R. Fang, J.-B. Yang, D.-L. Xu, A linguistic belief-based evidential reasoning approach and its application in aiding lung cancer diagnosis, Knowl.-Based Syst. 253 (2022) 109559.

[17]

Y.-Y. Liang, Y.-B. Ju, J.-D. Qin, W. Pedrycz, Multi-granular linguistic distribution evidential reasoning method for renewable energy project risk assessment, Inf. Fusion 65 (2021) 147-164.

[18]

F.-Y. Xiao, GEJS: a generalized evidential divergence measure for multisource information fusion, IEEE T. Syst., Man, Cy.: S. 53 (4) (2023) 2246-2258.

[19]

Q. Zhang, R.-H. Deng, K.-X. Ding, M.-Z. Li, Structural analysis and the sum of nodes’ betweenness centrality in complex networks, Chaos Solitons Fractals 185 (2024) 115158.

[20]

J. Zhao, K.H. Cheong, Enhanced epidemic control: community-based observer placement and source tracing, IEEE T. Syst., Man, Cy.: S., (2025), pp. 1-12.

[21]

J. Zhao, K.H. Cheong, Early identification of diffusion source in complex networks with evidence theory, Inf. Sci. 642 (2023) 119061.

[22]

L.-P. Pan, Y. Deng, A new complex evidence theory, Inf. Sci. 608 (2022) 251-261.

[23]

F.-Y. Xiao, J.-H. Wen, W. Pedrycz, Generalized divergence-based decision making method with an application to pattern classification, IEEE Trans. Knowl. Data Eng. 35 (7) (2023) 6941-6956.

[24]

Z.-W. Zhang, Z.-G. Liu, L.-B. Ning, A. Martin, J.-X. Xiong, Representation of imprecision in deep neural networks for image classification, IEEE T. Neur. Net. Lear. 36 (1) (2023) 1199-1212.

[25]

X.-Y. Deng, X. Li, W. Jiang, Evidence representation of uncertain information on a frame of discernment with semantic association, Inf. Fusion 111 (2024) 102538.

[26]

M.-Z. Li, L.-S. Li, Q. Zhang, A new distance measure between two basic probability assignments based on penalty coefficient, Inf. Sci. 677 (2024) 120883.

[27]

Y. Deng, Random permutation set, Int. J. Comput. Commun. 17 (1) (2022) 4542.

[28]

J.-X. Deng, Y. Deng, J.-B. Yang, Random permutation set reasoning, IEEE T. Pattern Anal. 46 (12) (2024) 10246-10258.

[29]

Q.-L. Zhou, W. Pedrycz, Y. Deng, Order-2 probabilistic information fusion on random permutation set, IEEE Trans. Knowl. Data Eng. 37 (2) (2025) 837-850.

[30]

Y.-D. Wang, Z. Li, Y. Deng, A new orthogonal sum in random permutation set, fuzzy set, Off. Syst. 490 (2024) 109034.

[31]

M.-Z. Li, L.-S. Li, Q. Zhang, Information fusion and decision-making utilizing additional permutation information, Mathematics 12 (22) (2024) 3632.

[32]

P. Smets, Decision making in the TBM: the necessity of the pignistic transformation, Int. J. Approx. Reason. 38 (2) (2005) 133-147.

[33]

Q.-L. Zhou, Y. Cui, Z. Li, Y. Deng, Marginalization in random permutation set theory: from the cooperative game perspective, Nonlinear Dyn. 111 (14) (2023) 13125-13141.

[34]

Q.-L. Zhou, Y. Cui, W. Pedrycz, Y. Deng, Conjunctive and disjunctive combination rules in random permutation set theory: a layer-2 belief structure perspective, Inf. Fusion 102 (2024) 102083.

[35]

T. Zhao, Z. Li, Y. Deng, Information fractal dimension of random permutation set, Chaos Solitons Fractals 174 (2023) 113883.

[36]

Z.-C. Chen, R. Cai, Symmetric Renyi-Permutation divergence and conflict management for random permutation set, Expert Syst. Appl. 238 (2024) 121784.

[37]

Q.-L. Zhou, Y. Deng, R.R. Yager, CD-BFT: canonical decomposition-based belief functions transformation in possibility theory, IEEE Trans. Cybern. 54 (1) (2024) 611-623.

AI Summary AI Mindmap
PDF (843KB)

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/