Compensation for topographic effect on P-band PolSAR data with a polarimetric decomposition technique

Yin Zhang , Ding-Feng Duan

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (1) : 100292

PDF (2797KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (1) :100292 DOI: 10.1016/j.jnlest.2024.100292
research-article

Compensation for topographic effect on P-band PolSAR data with a polarimetric decomposition technique

Author information +
History +
PDF (2797KB)

Abstract

A P-band polarimetric synthetic aperture radar (PolSAR) sensor has deep penetration ability into and through the vegetation canopies in forested environments. Thus, the sensor is of great potential to accurately assess forest parameters such as coverage, stand density, and tree height. Unfortunately, the radar backscatter from complex terrain can adversely impact the backscatter from trees or forests, and forest parameters assessed can be erroneous. Thus, reducing the topographic impact is an urgent must. In this study, a topographic compensation algorithm has been studied. To assess the algorithm's validity and effectiveness, we applied it to P-band PolSAR datasets in four forested areas in the US. Trees in the forest stands have diverse species, and the topographic conditions of the terrain differ. Significant topographic impact on the P-band PolSAR data exists before the topographic compensation algorithm. After the algorithm, the impact decreases noticeably qualitatively and quantitatively. The algorithm is valid and effective in reducing the topographic influence on the PolSAR data and, consequently, provides a better chance of retrieving accurate forest parameters.

Keywords

Azimuthal symmetry or asymmetry / Flat/non-flat terrain / P-band PolSAR / PolSAR decomposition / Radar backscatter from forests / Topographic compensation

Cite this article

Download citation ▾
Yin Zhang, Ding-Feng Duan. Compensation for topographic effect on P-band PolSAR data with a polarimetric decomposition technique. Journal of Electronic Science and Technology, 2025, 23(1): 100292 DOI:10.1016/j.jnlest.2024.100292

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yin Zhang: Writing–original draft, Modelling, Derivation, Coding, Data curation. Ding-Feng Duan: Conceptualization, Review & Editing, Validation.

Data availablity

The US National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) AIRSAR P-band data were downloaded from the Alaska Satellite Facility (ASF) website https://asf.alaska.edu/datasets/daac/airsar/. The NASA/JPL UAVSAR P-band data were downloaded from the website (https://uavsar.jpl.nasa.gov/). Data analyses were primarily conducted using the public domain PolSARPro and licensed MATLAB software.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grants No. 41771401 and No. 42350710201.

References

[1]

Y. Wang, F.W. Davis, J.M. Melack, Simulated and observed backscatter at P-, L-, and C-bands from ponderosa pine stands, IEEE T. Geosci. Remote 31 (4) (1993) 871-879.

[2]

Y. Wang, F.W. Davis, J.M. Melack, E.S. Kasischke, N.L. Jr. Christensen, The effects of changes in forest biomass on radar backscatter from tree canopies, Int. J. Rem. Sens. 16 (3) (1995) 503-513.

[3]

G. Sandberg, L.M.H. Ulander, J.E.S. Fransson, J. Holmgren, T. Le Toan, L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest, Remote Sens. Environ. 115 (11) (2011) 2874-2886.

[4]

C.-C. Wang, L. Wang, H.-Q. Fu, Q.-H. Xie, J.-J. Zhu, The impact of forest density on forest height inversion modeling from polarimetric InSAR data, Remote Sens. Basel 8 (4) (2016) 1-13. 291.

[5]

S. El Idrissi Essebtey, L. Vallard, P. Borderies, T. Koleck, B. Burban, T. Le Toan, Long-term trends of P-band temporal decorrelation over a tropical dense forest-experimental results for the BIOMASS mission, IEEE T. Geosci. Remote 60 (2022) 5102415. 1–15.

[6]

X.-F. Sun, B.-N. Wang, M.-S. Xiang, L.-J. Zhou, S. Wang, S. Jiang, Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR, IEEE T. Geosci. Remote 60 (2022) 5225115. 1–15.

[7]

Y. Wang, F.W. Davis, Decomposition of polarimetric synthetic aperture radar backscatter from upland and flooded forests, Int. J. Rem. Sens. 18 (6) (1997) 1319-1332.

[8]

F.T. Ulaby, K. Sarabandi, K. McDonald, M. Whitt, M.C. Dobson, Michigan microwave canopy scattering model, Int. J. Rem. Sens. 11 (7) (1990) 1223-1253.

[9]

K.C. McDonald, F.T. Ulaby, Radiative transfer modelling of discontinuous tree canopies at microwave frequencies, Int. J. Rem. Sens. 14 (11) (1993) 2097-2128.

[10]

Y. Wang, J. Day, G. Sun, Santa Barbara microwave backscattering model for woodlands, Int. J. Rem. Sens. 14 (8) (1993) 1477-1493.

[11]

G.-Q. Sun, K.J. Ranson, A three-dimensional radar backscatter model of forest canopies, IEEE T. Geosci. Remote 33 (2) (1995) 372-382.

[12]

A. Freeman, S.L. Durden, A three-component scattering model for polarimetric SAR data, IEEE T. Geosci. Remote 36 (3) (1998) 963-973.

[13]

Y. Yamaguchi, T. Moriyama, M. Ishido, H. Yamada, Four-component scattering model for polarimetric SAR image decomposition, IEEE T. Geosci. Remote 43 (8) (2005) 1699-1706.

[14]

R.N. Treuhaft, S.N. Madsen, M. Moghaddam, J.J. Van Zyl, Vegetation characteristics and underlying topography from interferometric radar, Radio Sci. 31 (6) (1996) 1449-1485.

[15]

F. Garestier, P.C. Dubois-Fernandez, I. Champion, Forest height inversion using high-resolution P-Band Pol-InSAR data, IEEE T. Geosci. Remote 46 (11) (2008) 3544-3559.

[16]

M.M. d'Alessandro, S. Tebaldini, S. Quegan, M.J. Soja, L.M.H. Ulander, K. Scipal, Interferometric ground cancellation for above ground biomass estimation, IEEE T. Geosci. Remote 58 (9) (2020) 6410-6419.

[17]

L.-M. Zhang, D. Zhuang, B. Zou, B.-L. Duan, H. Chen, A slope three-layer scattering model for forest parameter inversion of PolInSAR, IEEE Geosci. Remote S. 19 (2022) 4001605. 1–5.

[18]

J.S. Lee, T.L. Ainsworth, Y.-T. Wang, Polarization orientation angle and polarimetric SAR scattering characteristics of steep terrain, IEEE T. Geosci. Remote 56 (12) (2018) 7272-7281.

[19]

S.R. Cloude, E. Pottier, A review of target decomposition theorems in radar polarimetry, IEEE T. Geosci. Remote 34 (2) (1996) 498-518.

[20]

J.J. Van Zyl, Application of Cloude’s target decomposition theorem to polarimetric imaging radar data, in: Proc. of SPIE 1748, Radar Polarimetry, San Diego, USA, 1993, pp. 184-191.

[21]

J.S. Lee, D.L. Schuler, T.L. Ainsworth, E. Krogager, D. Kasilingam, W.M. Boerner, On the estimation of radar polarization orientation shifts induced by terrain slopes, IEEE T. Geosci. Remote 40 (1) (2002) 30-41.

[22]

L.L. Hess, J.M. Melack, S. Filoso, Y. Wang, Delineation of inundated area and vegetation along the amazon floodplain with the SIR-C synthetic aperture radar, IEEE T. Geosci. Remote 33 (4) (1995) 896-904.

[23]

Y. Wang, L.L. Hess, S. Filoso, J.M. Melack, Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling, Remote Sens. Environ. 54 (3) (1995) 324-332.

[24]

Y. Wang, F.W. Davis, J.M. Melack, Modeled response of l-band radar backscatter from conifer woodland to changes in tree canopy volume, in: Proc. of IEEE Intl. Geoscience and Remote Sensing Symp., Houston, USA, (1992), 776-778.

[25]

Y. Wang, L.L. Hess, S. Filoso, J.M. Melack, Canopy penetration studies: Modeled radar backscatter from amazon floodplain forests at C-, L-, and P-band, in: Proc. of IEEE Intl. Geoscience and Remote Sensing Symp., Pasadena, USA, (1994), pp. 1060-1062.

PDF (2797KB)

131

Accesses

0

Citation

Detail

Sections
Recommended

/