Stable computations of the spherically layered media theory with high lossy media by using scaled Bessel functions

Jia-Hui Wang , Bo O. Zhu

Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (1) : 100291

PDF (1058KB)
Journal of Electronic Science and Technology ›› 2025, Vol. 23 ›› Issue (1) :100291 DOI: 10.1016/j.jnlest.2024.100291
research-article

Stable computations of the spherically layered media theory with high lossy media by using scaled Bessel functions

Author information +
History +
PDF (1058KB)

Abstract

The spherically layered media theory has wide applications for electromagnetic wave scattering analysis. Due to the involved Bessel functions, the conventional formulations of the spherically layered media theory suffer from numerical overflow or underflow when the Bessel function's order is large, the argument is small, or the argument has a large imaginary part. The first two issues have been solved recently by employing small-argument asymptotic formulas of Bessel functions, while the third issue remains unsolved. In this paper, the Bessel functions in the conventional formulation of the theory are replaced by scaled Bessel functions which have good numerical properties for high lossy media, and stable formulas are derived. Numerical tests show that this approach can work properly with very high lossy media. Also, this approach can be seamlessly combined with the stable computation method for cases of small argument and large order of Bessel functions.

Keywords

Lossy media / Scaled Bessel function / Spherically layered media theory / Numerical stability

Cite this article

Download citation ▾
Jia-Hui Wang, Bo O. Zhu. Stable computations of the spherically layered media theory with high lossy media by using scaled Bessel functions. Journal of Electronic Science and Technology, 2025, 23(1): 100291 DOI:10.1016/j.jnlest.2024.100291

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jia-Hui Wang: Writing – original draft, Derivation, Coding, Investigation, Formal analysis, Data curation. Bo O. Zhu: Conceptualization, Review & editing, Validation, Supervision, Project administration.

Declaration of competing interest

The authors declare that there are no competing interest.

References

[1]

H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (3) (2010) 205-213.

[2]

X.-F. Fan, W.-T. Zheng, D.J. Singh, Light scattering and surface plasmons on small spherical particles, Light Sci. Appl. 3 (2014) 1-14.

[3]

K.L. Kelly, E. Coronado, L.-L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B 107 (3) (2003) 668-677.

[4]

N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111 (6) (2011) 3913-3961.

[5]

J.V. Martins, P. Artaxo, C. Liousse, J.S. Reid, P.V. Hobbs, Y.J. Kaufman, Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil, J. Geophys. Res. Atmos. 103 (D24) (1998) 32041-32050.

[6]

S. Arslanagic, R.W. Ziolkowski, Cylindrical and spherical active coated nanoparticles as nanoantennas: active nanoparticles as nanoantennas, IEEE Antenn. Propag. Mag. 59 (6) (2017) 14-29.

[7]

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Ann. Phys.-Berlin 330 (3) (1908) 377-445.

[8]

A.L. Aden, M. Kerker, Scattering of electromagnetic waves from two concentric spheres, J. Appl. Phys. 22 (10) (1951) 1242-1246.

[9]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, USA, (1969).

[10]

W.C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press, New York, USA, (1995).

[11]

L.-W. Li, P.S. Kooi, M.S. Leong, T.S. Yee, Electromagnetic dyadic Green’s function in spherically multilayered media, IEEE T. Microw. Theory 42 (12) (1994) 2302-2310.

[12]

E.L. Tan, S.Y. Tan, A unified representation of the dyadic Green’s functions for planar, cylindrical and spherical multilayered biisotropic media-abstract, J. Electromagnet. Wave. 12 (10) (1998) 1315-1316.

[13]

C.T. Tai, Dyadic Green Functions in Electromagnetic Theory, (second ed.), IEEE Press, Piscataway, (1994).

[14]

M. Majic, E.C. Le, Numerically stable formulation of Mie theory for an emitter close to a sphere, Appl. Opt. 59 (5) (2020) 1293-1300.

[15]

H.-Y. Yuan, W. Zhu, B.O. Zhu, Numerically stable calculations of the spherically layered media theory, IEEE Trans. Antenn. Propag. 71 (6) (2023) 5178-5188.

[16]

H.-Y. Yuan, W. Zhu, B.O. Zhu, Asymptotic approach for stable computations of the spherically layered media theory with large orders and small arguments, Opt Express 32 (3) (2024) 3062-3075.

[17]

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave Version 3.8.1 Manual: A High-Level Interactive Language for Numerical Computations, CreateSpace Independent Publishing Platform, (2014).

[18]

G.-Y. Wang, Z.-X. Li, C. Hu, G.-Y. Yang, X.-J. Yang, B. Liu, Deep learning-driven Mie scattering prediction method for radially varying spherical particles, Opt Laser. Technol. 177 (2024) 111170.

[19]

M.A. Ali, A. Alqaraghuli, A survey on the significance of artificial intelligence (AI) in network cybersecurity, Babylonian J. Net. 2023 (2023) 21-29.

PDF (1058KB)

140

Accesses

0

Citation

Detail

Sections
Recommended

/