Secondhand smoke (SHS) exposure is a major cause of illnesses in children and leaves a persistent and toxic residue indoors called thirdhand smoke (THS) that adheres to various surfaces, permeates materials, accumulates in household dust, and is subsequently re-emitted into the air. THS, like SHS, has been shown to contain multiple toxic chemicals, including carcinogenic tobacco-specific nitrosamines (TSNAs). Children are highly susceptible to tobacco smoke pollutants, and simple methods for assessing children’s SHS and THS exposure are needed. Therefore, we evaluated the performance of a cotton pillow used as a passive sampler in homes of children with caregivers who smoke tobacco, with and without home smoking bans, as well as nonsmokers. We deployed a commercially available organic cotton travel pillow, which was left in the home for a median of 9.1 days. Pillow component nicotine levels were significantly higher in homes of smokers without a ban as compared to smokers and nonsmokers who had a ban (e.g., median pillowcase nicotine 337.7 ng/g per day vs. 72.5 ng/g per day and 0.1 ng/g per day, respectively) and differences were similar to those for air nicotine. Pillowcase TSNAs were detected mainly in the homes of smokers without a smoking ban. Pillow component (pillowcase, fabric, and filling) nicotine levels were highly correlated with air nicotine levels (rho = 0.76-0.88, all P < 0.001). Nicotine in the pillow components was also highly correlated with urinary cotinine in the children (rho = 0.65 to 0.81, all P < 0.001) and other measures of tobacco smoke exposure. Pillow performance as a sampler is promising, given the ease and simplicity of sample deployment.
Chlorinated paraffins (CPs) are industrial chemicals with broad use as plasticizers and components in paints, cutting and drilling oil additives. The research interest in CPs has recently increased, not least due to the progress in analytical techniques and the globally reported large production volumes of CPs. The adverse effects on CPs in biota and in man are being reported in an increasing number of articles and the mechanism of toxicity is being discussed. Whether the metabolism of CPs could increase their toxicity is, however, still an unsolved question. In this Perspective paper, CP metabolism is discussed and arguments pointing to the important role of metabolic enhancement in CP toxicity are highlighted.
The concentration of 210Po and 210Pb in vegetation, and their transfer from soil to vegetation and via aerosol deposited on foliage are well established. The available data show significantly higher levels of these radionuclides in ash from forest fires and aerosols downwind from industrial sites. The climate change-induced hot and dry conditions promote the spread of forest fires, which burn huge areas. On average, over 10 million hectares are reportedly lost annually. Large-scale forest fires and fossil-fuel and coal-operated Power and Desalination Plants are very likely to result in the dispersion of 210Pb and 210Po into the regional aerosol; such an effect has already been observed due to fires in Ukraine, Belarus, and Russia, which have led to the dispersion of 137Cs over large parts of Europe. We have measured elevated levels in Kuwait, and similar observations have been reported from Portugal. The higher levels of 210Po in PM2.5 raise a serious concern about an increased inhalation dose humans could receive. Our estimate shows that humans in areas affected by forest fires might receive a dose equivalent to 2 µSv d-1, which is significantly higher than 0.099 µSv d-1, the dose a person gets from smoking a packet of cigarettes daily. We propose that size-fractionated aerosol sampling should be taken up in regions affected by forest fires and industrial activities that add 210Po to the atmosphere in order to obtain a robust inhalation dose assessment and issue informed advisories to the public.
Risks from indoor pollutants require the implementation of effective policies to prevent and reduce exposure. To take decisions and actions, competent authorities need relevant information. In the case of indoor radon exposure, surveys are carried out by installing detectors in buildings (homes, workplaces) that measure radon concentration in rooms. Conducting national or large-scale surveys in buildings requires addressing both technical complexities of implementation and economic costs. In order to support the implementation of large-scale radon surveys, procedure and tools are described for defining the sample size of buildings to be measured according to available resources, for planning the sampling of buildings in relation to the specific objectives of the survey, and for obtaining a tool for management and control of sample recruitment and installation of radon detectors in buildings, reducing sources of bias. A particular application is shown for the case of the EU radon regulation.
Food waste is currently used for the production of biogas. However, a reusage of waste is preferred to follow the principles of the circular economy and consider the waste management hierarchy, which can be achieved by rearing black soldier fly (BSF) larvae on such organic waste. Nonetheless, the presence of (micro)plastics and related additive plasticisers might induce chemical safety hazards to the larval applications as feed. Therefore, the bioaccumulation and biotransformation of two plasticisers (diisononyl phthalate (DINP) and di(2-ethylhexyl) terephthalate (DEHT)) in BSF larvae reared on food waste streams contaminated with polyvinyl chloride (PVC) (micro)plastics were investigated. Results showed that BSF larvae appeared to have a moderate intake of DINP during its rearing phase of 10 days (82 - 273 ng/g), while being able to biotransform it into the primary biotransformation product monoisononyl phthalate (MINP) within 24 h. For DEHT, an uptake of 67 - 137 ng/g was measured in the BSF larvae; however, no clear biotransformation pattern was observed. In addition, while no secondary oxidative biotransformation products were found in the larvae, these were measured in the frass, leading to the hypothesis that microorganism-mediated biotransformation of plasticisers occurred. In conclusion, based on the results of this study, BSF larvae could potentially be used safely in the frame of circular economy, when reared on organic substrates contaminated with the same PVC microplastic content and sizes used.
Passive air sampling (PAS) using a polyurethane foam (PUF) sorbent is a widely used technique to characterize air concentrations of semi-volatile organic compounds (SVOCs) in indoor environments; however, there is little consensus on the type of housing used in sampler housings and how sampler masses are converted to air concentration. We systematically evaluate the three types of PUF-PAS sampler housings most commonly used indoors, and characterize uptake rates for > 50 SVOCs, covering legacy persistent organic pollutants, pesticides, combustion by-products, and flame retardants for all three housing types. There is a clear association between the amount of shielding of the PUF disk and equivalent air volumes for PUF-PAS, with median sampling rates for double-bowl housings of 0.72 m3/day (0.62-0.92 m3/day), 1.3 m3/day (1.0-1.7 m3/day) for single bowl, and
Antimicrobial resistance (AMR) is recognized as one of the most serious threats to public health. Unparalleled population growth and accelerated rates of AMR emergence and dissemination have resulted in both novel resistance in pathogenic organisms and the re-appearance of infections that were formerly under control. Consequently, this has led to an increased quantity of infectious diseases. One of the main drivers of antimicrobial overuse is inappropriate prescribing in human and veterinary medicine. The ability to rapidly survey the spread of antimicrobial resistance within human populations is key for its prevention, intervention, and control. However, many constraints are present for current clinical surveillance systems and their capacity to determine AMR dynamics in the microbiome of healthy individuals as well as in clinical pathogens causing infections. Wastewater-based epidemiology (WBE) is an emergent technique that has the capacity to act as a supplementary measure for current infectious disease surveillance systems and as an early warning system for infectious disease outbreaks. The development of disease outbreaks to the community level can be monitored in real time through the analysis of population pooled wastewater. This review provides an introduction to using wastewater-based epidemiology to monitor AMR bacteria, as well as an overview of wastewater-based epidemiology and its components.
A suite of novel brominated flame retardants (NBFRs), hexabromocyclododecanes (HBCDDs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus were measured in matched samples of house dust