[1] 万小波,张晓敏,黎明. 天琴计划轨道构型长期漂移特性分析[J]. 中国空间科学技术 2017, 37(3):110-116.
WAN X B,ZHANG X M,LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin Mission[J]. Chinese Space Science and Technology,2017,37(3):110-6 (in Chinese).
[2] SWEETSER T H. An end-to-end trajectory description of the LISA mission[J]. Classical and Quantum Gravity,2005,22(10):S429
[3] LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Class Quantum Gravity,2016,33(3):19-25
[4] HU W R,WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review,2017,4(5):685-686
[5] XIA Y,LI G,HEINZEL G,RUEDIGER A,et al. Orbit design for the Laser Interferometer Space Antenna (LISA)[J]. Science China Physics,Mechanics and Astronomy,2010,53(1):179-186
[6] CHIHANG Y,HAO Z. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics,2019,3(2):155-171
[7] STEBBINS R T. Rightsizing LISA[J]. Classical and Quantum Gravity,2009,26(9):094014
[8] YE B B,ZHANG X F,ZHOU M Y,et al. Optimizing orbits for TianQin[J]. International Journal of Modern Physics D,2019,28(9):1950121
[9] SEOANE P,AOUDIA S. Low-frequency gravitational-wave science with eLISA/NGO[J]. Classical and Quantum Gravity,2012(29):124016
[10] HU X C,LI X H. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity,2018(35):095008
[11] 李卓. “太极”空间引力波探测编队飞行轨道优化设计与分析[D]. 北京:中国科学院大学(中国科学院国家空间科学中心),2020.
[12] JOFFE E,WEALTHY D,FERNANDEZ I,et al. LISA:heliocentric formation design for the laser interferometer space antenna mission[J]. Advances in Space Research,2021,67(11):3868-3879
[13] 邹奎,苟兴宇,薛大同. 重力梯度测量卫星无拖曳控制技术[J]. 空间控制技术与应用,2017,43(2):28-35
ZHOU K,GOU X Y,XUE D T. An overview on drag-free control for gravitational gradiometry satellites[J]. Aerospace Control and Application,2017,43(2):28-35
[14] 张永合,梁旭文,张健,等. 无阻力双星串行编队相对位置有限时间控制[J]. 宇航学报,2015,36(8):923-931
ZHANG Y H, LIANG X W, ZHANG J, et al. Finite-time relative position control for drag-free dual-satellite serial-formation[J]. Journal of Astronautics,2015,36(8):923-931
[15] VIDANO S,NOVARA C,et al. The LISA DFACS:a nonlinear model for the spacecraft dynamics[J]. Aerospace Science and Technology,2020(107):106313
[16] FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139
[17] 孙笑云,沈强,吴树范. 基于改进Kinky Inference的输出调节自适应无拖曳控制[EB/OL]. [2023-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2022.0504.
SUN X Y,SHEN Q,WU SHU F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. [2023-05-23]. http://doi:10.13700/j.bh.1001-5965.2022.0504.
[18] 刘伟,高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学:物理学,力学,天文学,2020,50(7):112-122
LIU W,GAO Y. Drag-free control methods for space-based gravitational-wave detection[J]. Science China(Physics,Mechanics & Astronomy),2020,50(7):112-122
[19] 孙笑云,吴树范,沈强. 基于LMI的输出跟踪自适应鲁棒无拖曳控制[EB/OL]. [2023-05-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20220726.0941.004.html.
[20] SUN X Y,WU S F,SHEN Q. LMI based Output Tracking Robust Drag-free Control with Model Reference Adaptive Scheme[EB/OL]. [2023-05-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20220726.0941.004.html.
[21] 付海清,吴树范,刘梅林, 等. 基于干扰观测器的空间惯性传感器自适应控制[EB/OL].[2023-05-23].https://doi.org/10.13700/j.bh.1001-5965.2021.0734.
FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[EB/OL]. [2023-05-23].https://doi.org/10.13700/j.bh.1001-5965.2021.0734.
[22] 王运永. 引力波探测[M]. 北京:科学出版社,2020:7-210.
[23] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展. 2013,43(4):415-447.
LUO Z R, BAI S, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics.2013, 43(4): 415-447.
[24] 王楠. 深空引力波探测的无拖曳控制技术研究[D]. 上海:上海交通大学,2020.
[25] 吴树范,王楠,龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报(中英文),2020,7(2):118-127
WU S F,WANG N,GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration,2020,7(2):118-127
[26] CANUTO E,BONA B,CALAFIORE G,et al. Drag free con-trol for the European satellite GOCE. Part I:model-ling[C]//Proceedings of the 41st IEEE Conference on Decision and Control. [S. l. ]:IEEE,2002.
[27] CANUTO E,MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satel-lite GOCE[J]. Acta Astronautica,2009,64(2-3):325-344
[28] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica,2008,44(7):1766-1780
[29] 邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514
DENG J F, CAI Z M, CHEN K, et al. Drag-free control and its application in China’s space gravitational wave detection[J]. Chinese Optics,2019,12(3):503-514
[30] CANUTO E. Stochastic modelling and prediction for spacecraft drag-free control[C]//Proceedings of the ISCIE International Symposium on Stochastic Sys-tems Theory and its Applications. [S. l. ]:ISCIE,2016.
[31] CANUTO E,BONA B,CALAFIORE G,et al. Drag free con-trol for the European satellite GOCE. Part II:digital control[C]//Proceedings of the 41st IEEE Conference on Decision and Control,2002. [S. l. ]:IEEE,2002.
[32] GATH P,SCHULTE H R,WEISE D,et al. Drag free and attitude control system design for the LISA science mode[C]//Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit. [S. l.]:AIAA,2007.
[33] ZHANG Y,LIU Y,et al. Attitude-Orbit coupled control of gravitational wave detection spacecraft with communication delays[J]. Sensors,2023(23):3233
[34] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报(中英文),2020,7(1):3-10
LUO Z R, ZHANG M, JIN G, et al. Introduction of chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration,2020,7(1):3-10
[35] 罗俊,艾凌皓,等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(Z1):1-19
LUO J, AI L H, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(Z1):1-19
[36] 李洪银,叶小容,刘佳恒,等. 天琴无拖曳控制研究的关键问题[J]. 中山大学学报(自然科学版),2021,60(Z1):213-224
[37] SUN X,SHEN Q,WU S,et al. Partial State Feedback MRAC based reconfigurable Fault-Tolerant control of Drag-Free satellite with bounded estimation error[J]. IEEE Transactions on Aerospace and Electronic Systems,2023:3276342.
[38] CANUTO E,MOLANO A,MASSOTTI L. Drag-free control of the GOCE satellite:noise and observer design[J]. IEEE Transactions on Control Systems Technology,2009,18(2):501-509
[39] MA Z,WANG J. A controller design method for drag-free spacecraft multiple loops with frequency domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems,2022:3224410.
[40] ZHANG Q,LIU M,WU S. Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-in-the-loop simulation[J]. Classical and Quantum Gravity,2023(40):115001
[41] WU S,FERTIN D. Spacecraft drag-free attitude con-trol system design with quantitative feedback theory[J]. Acta Astronautica,2008,62(12):668-682
[42] ANTONUCCI F,ARMANO M,AUDLEY H,et al. The LISA pathfinder mission[J]. Classical and Quantum Gravity,2012,29(12):124014
[43] WANG E,QIU S,LIU M,et al. Event-triggered adaptive terminal sliding mode tracking control for drag-free spacecraft inner-formation with full state constraints[J]. Aerospace Science and Technology,2022(124):107524
[44] LIAN X B,ZHANG J X,LU L,et al. Frequency separation control for Drag-Free satellite with Frequency-Domain constraints[J] IEEE Transactions on Aerospace and Electronic Systems,2021,57(6):4085-4096.
[45] MCNAMARA P,VITALE S,DANZMANN K,et al. Lisa pathfinder[J]. Classical and quantum gravity,2008,25(11):114034
[46] BAI Y,LI Z,HU M,et al. Attitude-orbit coupled control of gravitational wave detection spacecraft with communication delays[J]. Sensors,2017(17):1943-1948
[47] 王铖锐,白彦峥,蔡林,等. 高精度静电惯性传感器[J]. 中国科学:物理学 力学 天文学,2023,53(5):26-42
WANG C R,BAI Y Z,CAI L,et al. High precision electrostatic inertial sensor[J]. Scientia Sinica(Physica,Mechanica & Astronomica),2023,53(5):26-42
[48] 吴树范,张倩云,刘梅林,等. 空间引力波探测惯性传感器关键技术与进展[EB/OL]. [2023-05-29].https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD67yVpHYCr17kxk6S9to59rNmVniwt00a_hqAcNW-5Hi3MGv-tuQjePX&uniplatform=NZKPT.
[49] WU S,GIULICCHI L,FENAL T,et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2010.
[50] WU S,GIULICCHI L,FENAL T,et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal Micro-Newton thrusters[C]//Proceedings of AIAA Guidance,Nav-igation,and Control Conference. [S. l. ]:AIAA,2011.
[51] GIULICCHI L,WU S,FENAL T. Attitude and orbit control systems for Lisa pathfinder spacecraft[J]. Aerospace Science And Technology,2013,24(24):283-294.
[52] CAO X,WU S,GONG D,Study on spacecraft Ultra-stable platform control for Tai Chi mission based on LTV-MPC,ICGNC[C]//Proceedings of Advances in Guidance,Navigation and Control. Harbin,China:[s. n. ],2022.
[53] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报(中英文),2020,7(1):3-10.
LUO Z R,ZHANG M,JIN G,et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite missionJournal of Deep Space Exploration,2020,7(1):3-10.
[54] 刘培栋,党朝辉. 空间引力波探测正三角形编队动力学机理与控制方法[J]. 指挥与控制学报,2021,7(3):275-286
LIU P D, DANG C H. Triangular Formation Dynamics and Optimal Control for Space-based Gravitational-Wave Observatory[J]. Journal of Command and Control,2021,7(3):275-286
[55] 王尚胜. 面向空间引力波探测的微型会切场推力器性能退化研究[D]. 哈尔滨:哈尔滨工业大学,2022.
LIU P D,DANG C H. Triangular formation dynamics and optimal control for space-based gravitational-wave observatory[J]. Journal of Command and Control,2021,7(3):275-286.