Advances in Frontier Research of Space Gravitational Wave Detection Spacecraft Platform System

WU Shufan1,2, SUN Xiaoyun1,2, ZHANG Qianyun1,2, XIANG Yu1,2

PDF(2155 KB)
PDF(2155 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (3) : 233-246. DOI: 10.15982/j.issn.2096-9287.2023.20230095
Special Issue:Space Gravitational Wave Detection
Special Issue:Space Gravitational Wave Detection

Advances in Frontier Research of Space Gravitational Wave Detection Spacecraft Platform System

  • WU Shufan1,2, SUN Xiaoyun1,2, ZHANG Qianyun1,2, XIANG Yu1,2
Author information +
History +

Abstract

The high precision spacecraft platform system is an important carrier and plays a significant role in the successful implementation of a space gravitational wave detection mission. In this paper, frontier researches on high-precision spacecraft platform systems were reviewed and summarized. The inertial sensor reference of spacecraft platform, micro-thrust actuator, drag-free attitude control technology of spacecraft platform, formation design and control of spacecraft system were discussed. The recent relevant research progress of spacecraft platform system used for space gravitational wave detection was summarized and discussed, covering both domestic and international frontier research hotspots, focusing on key research issues of space gravitational wave detection spacecraft platform system design. A prospect on the development of spacecraft platform system was proposed, including key payloads, orbit and attitude control strategies, formation configuration design, etc

Keywords

space gravitational wave detection / spacecraft platforms and systems / space inertial sensor / drag-free control / formation configuration

Cite this article

Download citation ▾
WU Shufan, SUN Xiaoyun, ZHANG Qianyun, XIANG Yu. Advances in Frontier Research of Space Gravitational Wave Detection Spacecraft Platform System. Journal of Deep Space Exploration, 2023, 10(3): 233‒246 https://doi.org/10.15982/j.issn.2096-9287.2023.20230095

References

[1] 万小波,张晓敏,黎明. 天琴计划轨道构型长期漂移特性分析[J]. 中国空间科学技术 2017, 37(3):110-116.
WAN X B,ZHANG X M,LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin Mission[J]. Chinese Space Science and Technology,2017,37(3):110-6 (in Chinese).
[2] SWEETSER T H. An end-to-end trajectory description of the LISA mission[J]. Classical and Quantum Gravity,2005,22(10):S429
[3] LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Class Quantum Gravity,2016,33(3):19-25
[4] HU W R,WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review,2017,4(5):685-686
[5] XIA Y,LI G,HEINZEL G,RUEDIGER A,et al. Orbit design for the Laser Interferometer Space Antenna (LISA)[J]. Science China Physics,Mechanics and Astronomy,2010,53(1):179-186
[6] CHIHANG Y,HAO Z. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics,2019,3(2):155-171
[7] STEBBINS R T. Rightsizing LISA[J]. Classical and Quantum Gravity,2009,26(9):094014
[8] YE B B,ZHANG X F,ZHOU M Y,et al. Optimizing orbits for TianQin[J]. International Journal of Modern Physics D,2019,28(9):1950121
[9] SEOANE P,AOUDIA S. Low-frequency gravitational-wave science with eLISA/NGO[J]. Classical and Quantum Gravity,2012(29):124016
[10] HU X C,LI X H. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity,2018(35):095008
[11] 李卓. “太极”空间引力波探测编队飞行轨道优化设计与分析[D]. 北京:中国科学院大学(中国科学院国家空间科学中心),2020.
[12] JOFFE E,WEALTHY D,FERNANDEZ I,et al. LISA:heliocentric formation design for the laser interferometer space antenna mission[J]. Advances in Space Research,2021,67(11):3868-3879
[13] 邹奎,苟兴宇,薛大同. 重力梯度测量卫星无拖曳控制技术[J]. 空间控制技术与应用,2017,43(2):28-35
ZHOU K,GOU X Y,XUE D T. An overview on drag-free control for gravitational gradiometry satellites[J]. Aerospace Control and Application,2017,43(2):28-35
[14] 张永合,梁旭文,张健,等. 无阻力双星串行编队相对位置有限时间控制[J]. 宇航学报,2015,36(8):923-931
ZHANG Y H, LIANG X W, ZHANG J, et al. Finite-time relative position control for drag-free dual-satellite serial-formation[J]. Journal of Astronautics,2015,36(8):923-931
[15] VIDANO S,NOVARA C,et al. The LISA DFACS:a nonlinear model for the spacecraft dynamics[J]. Aerospace Science and Technology,2020(107):106313
[16] FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139
[17] 孙笑云,沈强,吴树范. 基于改进Kinky Inference的输出调节自适应无拖曳控制[EB/OL]. [2023-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2022.0504.
SUN X Y,SHEN Q,WU SHU F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. [2023-05-23]. http://doi:10.13700/j.bh.1001-5965.2022.0504.
[18] 刘伟,高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学:物理学,力学,天文学,2020,50(7):112-122
LIU W,GAO Y. Drag-free control methods for space-based gravitational-wave detection[J]. Science China(Physics,Mechanics & Astronomy),2020,50(7):112-122
[19] 孙笑云,吴树范,沈强. 基于LMI的输出跟踪自适应鲁棒无拖曳控制[EB/OL]. [2023-05-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20220726.0941.004.html.
[20] SUN X Y,WU S F,SHEN Q. LMI based Output Tracking Robust Drag-free Control with Model Reference Adaptive Scheme[EB/OL]. [2023-05-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20220726.0941.004.html.
[21] 付海清,吴树范,刘梅林, 等. 基于干扰观测器的空间惯性传感器自适应控制[EB/OL].[2023-05-23].https://doi.org/10.13700/j.bh.1001-5965.2021.0734.
FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[EB/OL]. [2023-05-23].https://doi.org/10.13700/j.bh.1001-5965.2021.0734.
[22] 王运永. 引力波探测[M]. 北京:科学出版社,2020:7-210.
[23] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展. 2013,43(4):415-447.
LUO Z R, BAI S, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics.2013, 43(4): 415-447.
[24] 王楠. 深空引力波探测的无拖曳控制技术研究[D]. 上海:上海交通大学,2020.
[25] 吴树范,王楠,龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报(中英文),2020,7(2):118-127
WU S F,WANG N,GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration,2020,7(2):118-127
[26] CANUTO E,BONA B,CALAFIORE G,et al. Drag free con-trol for the European satellite GOCE. Part I:model-ling[C]//Proceedings of the 41st IEEE Conference on Decision and Control. [S. l. ]:IEEE,2002.
[27] CANUTO E,MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satel-lite GOCE[J]. Acta Astronautica,2009,64(2-3):325-344
[28] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica,2008,44(7):1766-1780
[29] 邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514
DENG J F, CAI Z M, CHEN K, et al. Drag-free control and its application in China’s space gravitational wave detection[J]. Chinese Optics,2019,12(3):503-514
[30] CANUTO E. Stochastic modelling and prediction for spacecraft drag-free control[C]//Proceedings of the ISCIE International Symposium on Stochastic Sys-tems Theory and its Applications. [S. l. ]:ISCIE,2016.
[31] CANUTO E,BONA B,CALAFIORE G,et al. Drag free con-trol for the European satellite GOCE. Part II:digital control[C]//Proceedings of the 41st IEEE Conference on Decision and Control,2002. [S. l. ]:IEEE,2002.
[32] GATH P,SCHULTE H R,WEISE D,et al. Drag free and attitude control system design for the LISA science mode[C]//Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit. [S. l.]:AIAA,2007.
[33] ZHANG Y,LIU Y,et al. Attitude-Orbit coupled control of gravitational wave detection spacecraft with communication delays[J]. Sensors,2023(23):3233
[34] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报(中英文),2020,7(1):3-10
LUO Z R, ZHANG M, JIN G, et al. Introduction of chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration,2020,7(1):3-10
[35] 罗俊,艾凌皓,等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(Z1):1-19
LUO J, AI L H, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(Z1):1-19
[36] 李洪银,叶小容,刘佳恒,等. 天琴无拖曳控制研究的关键问题[J]. 中山大学学报(自然科学版),2021,60(Z1):213-224
[37] SUN X,SHEN Q,WU S,et al. Partial State Feedback MRAC based reconfigurable Fault-Tolerant control of Drag-Free satellite with bounded estimation error[J]. IEEE Transactions on Aerospace and Electronic Systems,2023:3276342.
[38] CANUTO E,MOLANO A,MASSOTTI L. Drag-free control of the GOCE satellite:noise and observer design[J]. IEEE Transactions on Control Systems Technology,2009,18(2):501-509
[39] MA Z,WANG J. A controller design method for drag-free spacecraft multiple loops with frequency domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems,2022:3224410.
[40] ZHANG Q,LIU M,WU S. Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-in-the-loop simulation[J]. Classical and Quantum Gravity,2023(40):115001
[41] WU S,FERTIN D. Spacecraft drag-free attitude con-trol system design with quantitative feedback theory[J]. Acta Astronautica,2008,62(12):668-682
[42] ANTONUCCI F,ARMANO M,AUDLEY H,et al. The LISA pathfinder mission[J]. Classical and Quantum Gravity,2012,29(12):124014
[43] WANG E,QIU S,LIU M,et al. Event-triggered adaptive terminal sliding mode tracking control for drag-free spacecraft inner-formation with full state constraints[J]. Aerospace Science and Technology,2022(124):107524
[44] LIAN X B,ZHANG J X,LU L,et al. Frequency separation control for Drag-Free satellite with Frequency-Domain constraints[J] IEEE Transactions on Aerospace and Electronic Systems,2021,57(6):4085-4096.
[45] MCNAMARA P,VITALE S,DANZMANN K,et al. Lisa pathfinder[J]. Classical and quantum gravity,2008,25(11):114034
[46] BAI Y,LI Z,HU M,et al. Attitude-orbit coupled control of gravitational wave detection spacecraft with communication delays[J]. Sensors,2017(17):1943-1948
[47] 王铖锐,白彦峥,蔡林,等. 高精度静电惯性传感器[J]. 中国科学:物理学 力学 天文学,2023,53(5):26-42
WANG C R,BAI Y Z,CAI L,et al. High precision electrostatic inertial sensor[J]. Scientia Sinica(Physica,Mechanica & Astronomica),2023,53(5):26-42
[48] 吴树范,张倩云,刘梅林,等. 空间引力波探测惯性传感器关键技术与进展[EB/OL]. [2023-05-29].https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD67yVpHYCr17kxk6S9to59rNmVniwt00a_hqAcNW-5Hi3MGv-tuQjePX&uniplatform=NZKPT.
[49] WU S,GIULICCHI L,FENAL T,et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2010.
[50] WU S,GIULICCHI L,FENAL T,et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal Micro-Newton thrusters[C]//Proceedings of AIAA Guidance,Nav-igation,and Control Conference. [S. l. ]:AIAA,2011.
[51] GIULICCHI L,WU S,FENAL T. Attitude and orbit control systems for Lisa pathfinder spacecraft[J]. Aerospace Science And Technology,2013,24(24):283-294.
[52] CAO X,WU S,GONG D,Study on spacecraft Ultra-stable platform control for Tai Chi mission based on LTV-MPC,ICGNC[C]//Proceedings of Advances in Guidance,Navigation and Control. Harbin,China:[s. n. ],2022.
[53] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报(中英文),2020,7(1):3-10.
LUO Z R,ZHANG M,JIN G,et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite missionJournal of Deep Space Exploration,2020,7(1):3-10.
[54] 刘培栋,党朝辉. 空间引力波探测正三角形编队动力学机理与控制方法[J]. 指挥与控制学报,2021,7(3):275-286
LIU P D, DANG C H. Triangular Formation Dynamics and Optimal Control for Space-based Gravitational-Wave Observatory[J]. Journal of Command and Control,2021,7(3):275-286
[55] 王尚胜. 面向空间引力波探测的微型会切场推力器性能退化研究[D]. 哈尔滨:哈尔滨工业大学,2022.
LIU P D,DANG C H. Triangular formation dynamics and optimal control for space-based gravitational-wave observatory[J]. Journal of Command and Control,2021,7(3):275-286.
PDF(2155 KB)

Accesses

Citations

Detail

Sections
Recommended

/