Severe systemic inflammation in COVID-19 patients can lead to dysfunction of multiple organs, including the heart. Using an ex vivo cardiac organoid system, Mills et al discovered that inhibitors of the chromatin reader protein, bromodomain-containing protein 4, protect cardiomyocytes from COVID-associated “cytokine storm”. We briefly review these important findings and highlight the translational significance of the work.
Introduction: Aortic stiffness offers important insight into vascular aging and cardiovascular disease (CVD) risk. The referent measure of aortic stiffness is carotid-femoral pulse wave velocity (cfPWV). cfPWV can be estimated (ePWV) from age and mean arterial pressure. Few studies have directly compared the association of ePWV to measured cfPWV, particularly in non-White adults. Moreover, whether ePWV and cfPWV correlate similarly with CVD risk remains unexplored.
Aim: (1) To estimate the strength of the agreement between ePWV and cfPWV in both Black and White older adults; and (2) to compare the associations of ePWV and cfPWV with CVD risk factors and determine whether these associations were consistent across races.
Methods and Results: We evaluated 4478 [75.2 (SD 5.0) years] Black and White older adults in the Atherosclerosis Risk in Communities (ARIC) Study. cfPWV was measured using an automated pulse waveform analyzer. ePWV was derived from an equation based on age and mean arterial pressure. Association and agreement between the two measurements were determined using Pearson’s correlation coefficient (r), standard error of estimate (SEE), and Bland-Altman analysis. Associations between traditional risk factors with ePWV and cfPWV were evaluated using linear mixed regression models. We observed weak correlations between ePWV and cfPWV within White adults (r = 0.36) and Black adults (r = 0.31). The mean bias for Bland-Altman analysis was low at -0.17 m/s (95%CI: -0.25 to -0.09). However, the inspection of the Bland-Altman plots indicated systematic bias (P < 0.001), which was consistent across race strata. The SEE, or typical absolute error, was 2.8 m/s suggesting high variability across measures. In models adjusted for sex, prevalent diabetes, the number of prevalent cardiovascular diseases, and medication count, both cfPWV and ePWV were positively associated with heart rate, triglycerides, and fasting glucose, and negatively associated with body mass index (BMI) and smoking status in White adults (P < 0.05). cfPWV and ePWV were not associated with heart rate, triglycerides, and fasting glucose in Black adults, while both measures were negatively associated with BMI in Black adults.
Conclusions: Findings suggest a weak association between ePWV and cfPWV in older White and Black adults from ARIC. There were similar weak associations between CVD risk factors with ePWV and cfPWV in White adults with subtle differences in associations in Black adults.
One sentence summary: Estimated pulse wave velocity is weakly associated with measured carotid-femoral pulse wave velocity in older Black and White adults in ARIC.
The Cre-LoxP technology, including the tamoxifen (TAM) inducible MerCreMer (MCM), is increasingly used to delineate gene function, understand the disease mechanisms, and test therapeutic interventions. We set to determine the effects of TAM-MCM on cardiac myocyte transcriptome.
Expression of the MCM was induced specifically in cardiac myocytes upon injection of TAM to myosin heavy chain 6-MCM (Myh6-Mcm) mice for 5 consecutive days. Cardiac function, myocardial histology, and gene expression (RNA-sequencing) were analyzed 2 weeks after TAM injection. A total of 346 protein coding genes (168 up- and 178 down-regulated) were differentially expressed. Transcript levels of 85 genes, analyzed by a reverse transcription-polymerase chain reaction in independent samples, correlated with changes in the RNA-sequencing data. The differentially expressed genes were modestly enriched for genes involved in the interferon response and the tumor protein 53 (TP53) pathways. The changes in gene expression were relatively small and mostly transient and had no discernible effects on cardiac function, myocardial fibrosis, and apoptosis or induction of double-stranded DNA breaks.
Thus, TAM-inducible activation of MCM alters cardiac myocytes gene expression, provoking modest and transient interferon and DNA damage responses without exerting other discernible phenotypic effects. Thus, the effects of TAM-MCM on gene expression should be considered in discerning the bona fide changes that result from the targeting of the gene of interest.
Introduction: Cardiovascular disease and myocardial infarction are leading causes of morbidity and mortality in aged populations. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are under evaluation as a therapeutic option for the treatment of myocardial infarction.
Aim: This study aimed to develop a large-scale manufacturing procedure to harvest clinical-grade EVs required for the translation of EVs to the clinic.
Methods and Results: We compared the efficiency of large scale MSC-derived EV production and characterized EV miRNA cargo using the Quantum bioreactor with either fetal bovine serum or human platelet lysate (PLT)-containing expansion media. We tested the potency of the EV products in a murine model of acute myocardial infarction. Our results demonstrate an advantage of the Quantum bioreactor as a large-scale platform for EV production using PLT media; however, both media produced EVs with similar effects in vivo. The systemic delivery of EV products improved cardiac function following myocardial infarctions as indicated by a significant improvement in ejection fraction as well as parameters of cardiac performance, afterload, contractility and lusitropy.
Conclusion: These findings have important implications for scale-up strategies of EVs and will facilitate clinical trials for their clinical evaluation.
One sentence summary: Large scale manufacturing of MSC-derived EVs is feasible and when delivered systemically, improves cardiac function after myocardial infarction.
Ischemic heart disease and heart failure (HF) remain the leading causes of death worldwide. The inability of the adult heart to regenerate itself following ischemic injury and subsequent scar formation may explain the poor prognosis in these patients, especially when necrosis is extensive and leads to severe left ventricular dysfunction. Under physiological conditions, the crosstalk between cardiomyocytes and cardiac interstitial/vascular cells plays a pivotal role in cardiac processes by limiting ischemic damage or promoting repair processes, such as angiogenesis, regulation of cardiac metabolism, and the release of soluble paracrine or endocrine factors. Cardiovascular risk factors are the main cause of accelerated senescence of cardiomyocytes and cardiac stromal cells (CSCs), causing the loss of their cardioprotective and repairing functions. CSCs are supportive cells found in the heart. Among these, the pericytes/mural cells have the propensity to differentiate, under appropriate stimuli in vitro, into adipocytes, smooth muscle cells, osteoblasts, and chondroblasts, as well as other cell types. They contribute to normal cardiac function and have an antifibrotic effect after ischemia. Diabetes represents a condition of accelerated senescence. Among the new pharmacological armamentarium with hypoglycemic effect, gliflozins have been shown to reduce the incidence of HF and re-hospitalization, probably through the anti-remodeling and anti-senescent effect on the heart, regardless of diabetes. Therefore, either reducing the senescence of CSC or removing senescent cells from the infarcted heart could represent future antisenescence strategies capable of preventing the deterioration of heart function leading to HF.
Aging is associated with progressive changes in cardiac structure and function. The prevalence of cardiovascular risk factors and disease also increases profoundly with advancing age. Therefore, understanding the spectrum of physiological changes in the aging heart is crucial for the identification and risk stratification of cardiovascular disease. In this review, we discuss echocardiographic features of age-related cardiac remodeling.