Systemic delivery of large-scale manufactured Wharton’s Jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction

Michael A. Bellio , Rosemeire M. Kanashiro-Takeuchi , Lauro Takeuchi , Shathiyah Kulandavelu , Yee-Shuan Lee , Wayne Balkan , Karen C. Young , Joshua M. Hare , Aisha Khan

The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (1) : 9

PDF
The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (1) :9 DOI: 10.20517/jca.2021.21
Original Research Article

Systemic delivery of large-scale manufactured Wharton’s Jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction

Author information +
History +
PDF

Abstract

Introduction: Cardiovascular disease and myocardial infarction are leading causes of morbidity and mortality in aged populations. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are under evaluation as a therapeutic option for the treatment of myocardial infarction.

Aim: This study aimed to develop a large-scale manufacturing procedure to harvest clinical-grade EVs required for the translation of EVs to the clinic.

Methods and Results: We compared the efficiency of large scale MSC-derived EV production and characterized EV miRNA cargo using the Quantum bioreactor with either fetal bovine serum or human platelet lysate (PLT)-containing expansion media. We tested the potency of the EV products in a murine model of acute myocardial infarction. Our results demonstrate an advantage of the Quantum bioreactor as a large-scale platform for EV production using PLT media; however, both media produced EVs with similar effects in vivo. The systemic delivery of EV products improved cardiac function following myocardial infarctions as indicated by a significant improvement in ejection fraction as well as parameters of cardiac performance, afterload, contractility and lusitropy.

Conclusion: These findings have important implications for scale-up strategies of EVs and will facilitate clinical trials for their clinical evaluation.

One sentence summary: Large scale manufacturing of MSC-derived EVs is feasible and when delivered systemically, improves cardiac function after myocardial infarction.

Keywords

Extracellular vesicles / Wharton’s Jelly / mesenchymal stem cells / manufacturing / myocardial infarction

Cite this article

Download citation ▾
Michael A. Bellio, Rosemeire M. Kanashiro-Takeuchi, Lauro Takeuchi, Shathiyah Kulandavelu, Yee-Shuan Lee, Wayne Balkan, Karen C. Young, Joshua M. Hare, Aisha Khan. Systemic delivery of large-scale manufactured Wharton’s Jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction. The Journal of Cardiovascular Aging, 2022, 2(1): 9 DOI:10.20517/jca.2021.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

North BJ.The intersection between aging and cardiovascular disease.Circ Res2012;110:1097-108 PMCID:PMC3366686

[2]

Bagno L,Balkan W.Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges.Mol Ther2018;26:1610-23 PMCID:PMC6037203

[3]

Schulman IH.Mesenchymal stromal cells as a therapeutic intervention. In: Valarmathi MT, editor. Stromal cells - structure, function, and therapeutic implications. IntechOpen; 2019.

[4]

Kanelidis AJ,Lopez J,Hare JM.Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials.Circ Res2017;120:1139-50 PMCID:PMC5656247

[5]

Hare JM,Gerstenblith G.Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.JAMA2012;308:2369-79 PMCID:PMC4762261

[6]

Hare JM,Rieger AC.Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial.J Am Coll Cardiol2017;69:526-37 PMCID:PMC5291766

[7]

Florea V,DiFede DL.Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study).Circ Res2017;121:1279-90

[8]

Rani S,Griffin MD.Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications.Mol Ther2015;23:812-23 PMCID:PMC4427881

[9]

Mendt M,Shpall E.Mesenchymal stem cell-derived exosomes for clinical use.Bone Marrow Transplant2019;54:789-92

[10]

Burke J,Hunter M,Hamrick M.Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics.Stem Cells Int2016;2016:5802529 PMCID:PMC4745815

[11]

Elahi FM,Nolta JA.Preclinical translation of exosomes derived from mesenchymal stem/stromal cells.Stem Cells2020;38:15-21 PMCID:PMC7004029

[12]

H Rashed M,K Helal G.Exosomes: from garbage bins to promising therapeutic targets.Int J Mol Sci2017;18:538 PMCID:PMC5372554

[13]

Ibrahim A.Exosomes: fundamental biology and roles in cardiovascular physiology.Annu Rev Physiol2016;78:67-83 PMCID:PMC5425157

[14]

Tan L,Liu Y,Li D.Recent advances of exosomes in immune modulation and autoimmune diseases.Autoimmunity2016;49:357-65

[15]

Willis GR,Mitsialis SA.Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency.Front Cardiovasc Med2017;4:63 PMCID:PMC5640880

[16]

Kishore R.More Than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair.Circ Res2016;118:330-43 PMCID:PMC4743531

[17]

Colao IL,Bracewell D.Manufacturing exosomes: a promising therapeutic platform.Trends Mol Med2018;24:242-56

[18]

Kandoi S,Patra B.Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs.Sci Rep2018;8:12439 PMCID:PMC6102222

[19]

Becherucci V,Casamassima S.Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience.Stem Cell Res Ther2018;9:124 PMCID:PMC5930506

[20]

Barile L,Marbán E.Roles of exosomes in cardioprotection.Eur Heart J2017;38:1372-9

[21]

Dougherty JA,Kumar N,Angelos MG.Potential role of exosomes in mending a broken heart: nanoshuttles propelling future clinical therapeutics forward.Stem Cells Int2017;2017:5785436 PMCID:PMC5662033

[22]

Yang L,Zhang C.Stem cell-derived extracellular vesicles for myocardial infarction: a meta-analysis of controlled animal studies.Aging (Albany NY)2019;11:1129-50 PMCID:PMC6402509

[23]

Hatzistergos KE,Dulce RA.S-nitrosoglutathione reductase deficiency enhances the proliferative expansion of adult heart progenitors and myocytes post myocardial infarction.J Am Heart Assoc2015;4:e001974 PMCID:PMC4608081

[24]

Parvatiyar MS,Kanashiro-Takeuchi RM.Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy.JCI Insight2019;5:123855 PMCID:PMC6629091

[25]

Nascimento DS,Esteves T.MIQuant--semi-automation of infarct size assessment in models of cardiac ischemic injury.PLoS One2011;6:e25045 PMCID:PMC3184116

[26]

Takagawa J,Wong ML.Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches.J Appl Physiol (1985)2007;102:2104-11 PMCID:PMC2675697

[27]

Hanley PJ,Durett AG.Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System.Cytotherapy2014;16:1048-58 PMCID:PMC4087082

[28]

Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302

[29]

Gallet R,Valle J.Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction.Eur Heart J2017;38:201-11 PMCID:PMC5837390

[30]

Williams AM,Brown JF.Early single-dose treatment with exosomes provides neuroprotection and improves blood-brain barrier integrity in swine model of traumatic brain injury and hemorrhagic shock.J Trauma Acute Care Surg2020;88:207-18

[31]

Jung JH,Tada Y.miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury.Basic Res Cardiol2021;116:19

[32]

Moghaddam AS,Esmaeili SA,Joneidi Z.Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease.Atherosclerosis2019;285:1-9

[33]

Burkhoff D.Pressure-volume loops in clinical research: a contemporary view.J Am Coll Cardiol2013;62:1173-6

[34]

Burkhoff D.Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis.Am J Physiol1993;265:H1819-28

[35]

Blaudszun G.Relevance of the volume-axis intercept, V0, compared with the slope of end-systolic pressure-volume relationship in response to large variations in inotropy and afterload in rats.Exp Physiol2011;96:1179-95

[36]

Burkhoff D,Yue DT.Contractility-dependent curvilinearity of end-systolic pressure-volume relations.Am J Physiol1987;252:H1218-27

[37]

Claessens TE,Afanasyeva M.Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?.Am J Physiol Heart Circ Physiol2006;290:H1474-83

[38]

Sharp TE 3rd,Hobby AR.Cortical bone stem cell therapy preserves cardiac structure and function after myocardial infarction.Circ Res2017;121:1263-78 PMCID:PMC5681384

[39]

Pacher P,Mukhopadhyay P,Kass DA.Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats.Nat Protoc2008;3:1422-34 PMCID:PMC2597499

[40]

Heusch G.The coronary circulation as a target of cardioprotection.Circ Res2016;118:1643-58

[41]

Heusch G.Critical issues for the translation of cardioprotection.Circ Res2017;120:1477-86

[42]

Qiu G,Ge M.Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs.Stem Cell Res Ther2018;9:320 PMCID:PMC6249826

[43]

Ferguson SW,Lee CJ.The microRNA regulatory landscape of MSC-derived exosomes: a systems view.Sci Rep2018;8:1419 PMCID:PMC5780426

[44]

Zhao J,Hu J.Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization.Cardiovasc Res2019;115:1205-16 PMCID:PMC6529919

[45]

Luther KM,McGuinness M.Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells.J Mol Cell Cardiol2018;119:125-37

[46]

Xiao C,Xu Y.Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b.Circ Res2018;123:564-78

AI Summary AI Mindmap
PDF

318

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/