Pigment epithelium derived factor (PEDF) prevents methyl methacrylate monomer-induced cytotoxicity in H9c2 cells

Li Xin, Tian Han, Jiao Tang, Xiaoyu Wang, Hao Zhang, Hongyan Dong, Kaijin Guo, Zhongming Zhang

PDF(453 KB)
PDF(453 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (6) : 512-520. DOI: 10.7555/JBR.31.20170068
Original Article
Original Article

Pigment epithelium derived factor (PEDF) prevents methyl methacrylate monomer-induced cytotoxicity in H9c2 cells

Author information +
History +

Abstract

Acrylic bone cements are currently the most frequently and extensively used materials in orthopedic implant treatment. However, adverse effects have been described of acrylic bone cement on the cardiovascular system. In the present study, we examined the cytotoxicity of bone cement ingredient methyl methacrylate (MMA) to cardiomyocytes and the potential detoxifying effect of pigment epithelium-derived factor (PEDF) in H9c2 cells. We found that high concentration of MMA (>120 mmol/L) led to necrotic cell death in H9c2 cells. However, MMA at low concentrations (30-90 mmol/L) caused apoptosis. Pretreatment of PEDF prevented MMA-induced cytotoxicity. In addition, PEDF enhanced total superoxide dismutase activities, and decreased MMA-induced production of malonaldehyde. Furthermore, MMA-induced downregulation of Akt activity was suppressed by PEDF. PEDF also increased the levels of peroxisome proliferator activated receptor gamma (PPARg) and lysophosphatidic acids (LPA) through PEDF receptor. These results indicated that PEDF inhibited MMA-induced cytotoxicity through attenuating oxidative stress, activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and/or PEDF receptor-LPA-PPARg pathways in H9c2 cells. PEDF may be explored as a candidate therapeutic agent for alleviating bone cement implantation syndrome during orthopedic surgery.

Keywords

pigment epithelium-derived factor / oxidative stress / bone cement / methyl methacrylate

Cite this article

Download citation ▾
Li Xin, Tian Han, Jiao Tang, Xiaoyu Wang, Hao Zhang, Hongyan Dong, Kaijin Guo, Zhongming Zhang. Pigment epithelium derived factor (PEDF) prevents methyl methacrylate monomer-induced cytotoxicity in H9c2 cells. Journal of Biomedical Research, 2017, 31(6): 512‒520 https://doi.org/10.7555/JBR.31.20170068

References

[1]
Donaldson AJ, Thomson  HE, Harper NJ , Bone cement implantation syndrome[J]. Br J Anaesth, 2009, 102(1): 12–22
Pubmed
[2]
Modig J, Busch  C, Olerud S , Arterial hypotension and hypoxaemia during total hip replacement: the importance of thromboplastic products, fat embolism and acrylic monomers[J]. Acta Anaesthesiol Scand, 1975, 19(1): 28–43
Pubmed
[3]
Clark DI, Ahmed  AB, Baxendale BR , Cardiac output during hemiarthroplasty of the hip. A prospective, controlled trial of cemented and uncemented prostheses[J]. J Bone Joint Surg Br, 2001, 83(3): 414–418
Pubmed
[4]
Urban MK, Sheppard  R, Gordon MA , Right ventricular function during revision total hip arthroplasty[J]. Anesth Analg, 1996, 82(6): 1225–1229
Pubmed
[5]
Parvizi J, Holiday  AD, Ereth MH , The Frank Stinchfield Award. Sudden death during primary hip arthroplasty[J]. Clin Orthop Relat Res, 1999, (369): 39–48
Pubmed
[6]
Byrick RJ, Forbes  D, Waddell JP . A monitored cardiovascular collapse during cemented total knee replacement[J]. Anesthesiology, 1986, 65(2): 213–216
Pubmed
[7]
Duncan JA. Intra-operative collapse or death related to the use of acrylic cement in hip surgery[J]. Anaesthesia, 1989, 44(2): 149–153
Pubmed
[8]
Pikis S, Goldstein  J, Spektor S . Potential neurotoxic effects of polymethylmethacrylate during cranioplasty[J]. J Clin Neurosci, 2015, 22(1): 139–143
Pubmed
[9]
Alvarez Berastegui GR ,  Raza SM ,  Anand VK , Endonasal endoscopic transsphenoidal chiasmapexy using a clival cranial base cranioplasty for visual loss from massive empty sella following macroprolactinoma treatment with bromocriptine: case report[J]. J Neurosurg, 2016, 124(4): 1025–1031
Pubmed
[10]
Ciapetti G, Granchi  D, Savarino L , In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells[J]. Biomaterials, 2002, 23(2): 617–627
Pubmed
[11]
Gough JE, Downes  S. Osteoblast cell death on methacrylate polymers involves apoptosis[J]. J Biomed Mater Res, 2001, 57(4): 497–505
Pubmed
[12]
Yamada M, Ogawa  T. Chemodynamics underlying N-acetyl cysteine-mediated bone cement monomer detoxification[J]. Acta Biomater, 2009, 5(8): 2963–2973
Pubmed
[13]
Yasuda I, Iwatsuki  K. Direct effects of acryl bone cement monomer on isolated heart muscle[J]. Tohoku J Exp Med, 1975, 117(1): 93–97
Pubmed
[14]
King GL, Suzuma  K. Pigment-epithelium-derived factor--a key coordinator of retinal neuronal and vascular functions[J]. N Engl J Med, 2000, 342(5): 349–351
Pubmed
[15]
Haribalaganesh R, Sheikpranbabu  S, Elayappan B , Pigment-epithelium-derived factor down regulates hyperglycemia-induced apoptosis via PI3K/Akt activation in goat retinal pericytes[J]. Angiogenesis, 2009, 12(4): 381–389
Pubmed
[16]
Elahy M, Baindur-Hudson  S, Cruzat VF , Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy[J]. J Endocrinol, 2014, 222(3): R129–R139
Pubmed
[17]
Hyland J, Robins  RH. Cardiac arrest and bone cement[J]. Br Med J, 1970, 4(5728): 176–177
Pubmed
[18]
Zhang J, Liu  W, Schnitzler V , Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties[J]. Acta Biomater, 2014, 10(3): 1035–1049
Pubmed
[19]
Tan H, Yang  S, Dai P , Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2[J]. Int J Nanomedicine, 2015, 10: 4341–4350
Pubmed
[20]
Singh V, Bhakta  P, Zietak E , Bone cement implantation syndrome: a delayed postoperative presentation[J]. J Clin Anesth, 2016, 31: 274–277
Pubmed
[21]
Kim KJ, Chen  DG, Chung N , Direct myocardial depressant effect of methylmethacrylate monomer: mechanical and electrophysiologic actions in vitro[J]. Anesthesiology, 2003, 98(5): 1186–1194
Pubmed
[22]
Aita H, Tsukimura  N, Yamada M , N-acetyl cysteine prevents polymethyl methacrylate bone cement extract-induced cell death and functional suppression of rat primary osteoblasts[J]. J Biomed Mater Res A, 2010, 92(1): 285–296
Pubmed
[23]
Notari L, Baladron  V, Aroca-Aguilar JD , Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor[J]. J Biol Chem, 2006, 281(49): 38022–38037
Pubmed
[24]
Gendaszewska-Darmach E . Lysophosphatidic acids, cyclic phosphatidic acids and autotaxin as promising targets in therapies of cancer and other diseases[J]. Acta Biochim Pol, 2008, 55(2): 227–240
Pubmed
[25]
Abdel-Raheem IT, Omran  GA, Katary MA . Irbesartan, an angiotensin II receptor antagonist, with selective PPAR-gamma-modulating activity improves function and structure of chemotherapy-damaged ovaries in rats[J]. Fundam Clin Pharmacol, 2015, 29(3): 286–298
Pubmed
[26]
Toba H, Miki  S, Shimizu T , The direct antioxidative and anti-inflammatory effects of peroxisome proliferator-activated receptors ligands are associated with the inhibition of angiotensin converting enzyme expression in streptozotocin-induced diabetic rat aorta[J]. Eur J Pharmacol, 2006, 549(1-3): 124–132
Pubmed
[27]
Wang X, Zhang  Y, Lu P , PEDF attenuates hypoxia-induced apoptosis and necrosis in H9c2 cells by inhibiting p53 mitochondrial translocation via PEDF-R[J]. Biochem Biophys Res Commun, 2015, 465(3): 394–401
Pubmed
[28]
Sussman MA, Völkers  M, Fischer K , Myocardial AKT: the omnipresent nexus. Physiol Rev, 2011, 91(3): 1023–1070
Pubmed
[29]
Riaz A, Huang  Y, Johansson S . G-protein-coupled lysophosphatidic acid receptors and their regulation of AKT signaling[J]. Int J Mol Sci, 2016, 17(2): 215
Pubmed
[30]
Zhuang W, Zhang  H, Pan J , PEDF and PEDF-derived peptide 44mer inhibit oxygen-glucose deprivation-induced oxidative stress through upregulating PPARg via PEDF-R in H9c2 cells[J]. Biochem Biophys Res Commun, 2016, 472(3): 482–488
Pubmed

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81270173), Jiangsu government grant to study abroad (JS-2013-246) and Xuzhou Science and Technology Projects (XZZD-1329).

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research.
PDF(453 KB)

Accesses

Citations

Detail

Sections
Recommended

/