Effects of a soybean milk product on feto-neonatal development in rats

Eun Suk An, Dongsun Park, Young-Hwan Ban, Jieun Choi, Da Woom Seo, Yoon Bok Lee, Mi Yae Shon, Ehn-Kyoung Choi, Yun-Bae Kim

PDF(307 KB)
PDF(307 KB)
Journal of Biomedical Research ›› 2018, Vol. 32 ›› Issue (1) : 51-57. DOI: 10.7555/JBR.31.20170067
Original Article

Effects of a soybean milk product on feto-neonatal development in rats

Author information +
History +

Abstract

Since estrogenic pollutants and phytoestrogens can cause the disorder of the reproductive system, the effects of a soybean milk product (Vegemil® containing 162 ppm isoflavones) on the feto-neonatal development, including male reproductive function, were investigated. Pregnant rats were fed the soybean milk (5% or 100% in drinking water) from gestational day (GD) 6 to parturition or to post-natal day (PND) 56. Specifically, the rats were divided into 4 groups: the control group (drinking water), the GD5% group (5% soybean milk during only the GD period), the GD-PND5% group (5% soybean milk during the GD and PND periods), and the GD-PND100% group (100% soybean milk instead of water during the GD and PND periods). During the gestational, lactational, and developmental periods, the reproductive and developmental parameters of dams and offspring were observed. Feeding soybean milk did not affect the birth and physical development of both male and female offspring. At PND57, the weights of the testes and epididymides of F1 males significantly increased by feeding a high concentration of the soybean milk (GD-PND100%). In addition, feeding of the soybean milk during both the GD and PND periods (GD-PND5% and GD-PND100%) enhanced the sperm counts and motility. The results indicate that soybean milk is safe for embryos, fetuses, and offspring, and improves the post-generational development of male reproductive function.

Keywords

soybean milk / feto-neonatal development / reproductive function / sperm quality

Cite this article

Download citation ▾
Eun Suk An, Dongsun Park, Young-Hwan Ban, Jieun Choi, Da Woom Seo, Yoon Bok Lee, Mi Yae Shon, Ehn-Kyoung Choi, Yun-Bae Kim. Effects of a soybean milk product on feto-neonatal development in rats. Journal of Biomedical Research, 2018, 32(1): 51‒57 https://doi.org/10.7555/JBR.31.20170067

References

[1]
Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones[J]. Am J Clin Nutr, 1998, 68(6 Suppl): 1333S–1346S
Pubmed
[2]
Barnes S. Phytoestrogens and breast cancer[J]. Baillieres Clin Endocrinol Metab, 1998, 12(4): 559–579
Pubmed
[3]
Song WO, Chun  OK, Hwang I, Soy isoflavones as safe functional ingredients[J]. J Med Food, 2007, 10(4): 571–580
Pubmed
[4]
Turner JV, Agatonovic-Kustrin  S, Glass BD. Molecular aspects of phytoestrogen selective binding at estrogen receptors[J]. J Pharm Sci, 2007, 96(8): 1879–1885
Pubmed
[5]
Sun Y, Huang  H, Sun Y, Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water[J]. Environ Pollut, 2013, 180: 339–344
Pubmed
[6]
Kavlock RJ, Daston  GP, DeRosa C, Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop[J]. Environ Health Perspect, 1996, 104(Suppl 4): 715–740
Pubmed
[7]
Lee BJ, Jung  EY, Yun YW, Effects of exposure to genistein during pubertal development on the reproductive system of male mice[J]. J Reprod Dev, 2004, 50(4): 399–409
Pubmed
[8]
Jung EY, Lee  BJ, Yun YW, Effects of exposure to genistein and estradiol on reproductive development in immature male mice weaned from dams adapted to a soy-based commercial diet[J]. J Vet Med Sci, 2004, 66(11): 1347–1354
Pubmed
[9]
Santti R, Mäkelä  S, Strauss L, Phytoestrogens: potential endocrine disruptors in males[J]. Toxicol Ind Health, 1998, 14(1-2): 223–237
Pubmed
[10]
Jefferson WN, Padilla-Banks  E, Newbold RR. Disruption of the female reproductive system by the phytoestrogen genistein[J]. Reprod Toxicol, 2007, 23(3): 308–316
Pubmed
[11]
Cederroth CR, Nef  S. Soy, phytoestrogens and metabolism: A review[J]. Mol Cell Endocrinol, 2009, 304(1-2): 30–42
Pubmed
[12]
Strauss L, Mäkelä  S, Joshi S, Genistein exerts estrogen-like effects in male mouse reproductive tract[J]. Mol Cell Endocrinol, 1998, 144(1-2): 83–93
Pubmed
[13]
West MC. The impact of dietary oestrogens on male and female fertility[J]. Curr Opin Obstet Gynecol, 2007, 19(3): 215–221
Pubmed
[14]
Chavarro JE, Toth  TL, Sadio SM, Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic[J]. Hum Reprod, 2008, 23(11): 2584–2590
Pubmed
[15]
Wisniewski AB, Klein  SL, Lakshmanan Y, Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats[J]. J Urol, 2003, 169(4): 1582–1586
Pubmed
[16]
Atanassova N, McKinnell  C, Turner KJ, Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels[J]. Endocrinology, 2000, 141(10): 3898–3907
Pubmed
[17]
Jeon JH, Shin  S, Park D, Fermentation filtrates of Rubus coreanus relax the corpus cavernosum and increase sperm count and motility[J]. J Med Food, 2008, 11(3): 474–478
Pubmed
[18]
Shin S, Jeon  JH, Park D, trans-Resveratrol relaxes the corpus cavernosum ex vivo and enhances testosterone levels and sperm quality in vivo[J]. Arch Pharm Res, 2008, 31(1): 83–87
Pubmed
[19]
Faqi AS, Johnson  WD, Morrissey RL, Reproductive toxicity assessment of chronic dietary exposure to soy isoflavones in male rats[J]. Reprod Toxicol, 2004, 18(4): 605–611
Pubmed
[20]
Nagao T, Yoshimura  S, Saito Y, Reproductive effects in male and female rats of neonatal exposure to genistein[J]. Reprod Toxicol, 2001, 15(4): 399–411
Pubmed
[21]
Flynn KM, Ferguson  SA, Delclos KB, Effects of genistein exposure on sexually dimorphic behaviors in rats[J]. Toxicol Sci, 2000, 55(2): 311–319
Pubmed
[22]
Delclos KB, Bucci  TJ, Lomax LG, Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats[J]. Reprod Toxicol, 2001, 15(6): 647–663
Pubmed
[23]
Zhang LD, Deng  Q, Wang ZM, Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein[J]. Biol Res, 2013, 46(2): 139–146
Pubmed
[24]
Ji S, Willis  GM, Frank GR, Soybean isoflavones, genistein and genistin, inhibit rat myoblast proliferation, fusion and myotube protein synthesis[J]. J Nutr, 1999, 129(7): 1291–1297
Pubmed
[25]
Yin D, Zhu  Y, Liu L, [Potential detrimental effect of soy isoflavones on testis sertoli cells][J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2014, 39(6): 598–604
Pubmed
[26]
Gray SL, Lackey  BR, Boone WR. Impact of kudzu and puerarin on sperm function[J]. Reprod Toxicol, 2015, 53: 54–62
Pubmed
[27]
Lehraiki A, Chamaillard  C, Krust A, Genistein impairs early testosterone production in fetal mouse testis via estrogen receptor alpha[J]. Toxicol In Vitro, 2011, 25(8): 1542–1547
Pubmed
[28]
Carreau S, Silandre  D, Bourguiba S, Estrogens and male reproduction: a new concept[J]. Braz J Med Biol Res, 2007, 40(6): 761–768
Pubmed
[29]
Carreau S, Hess  RA. Oestrogens and spermatogenesis[J]. Philos Trans R Soc Lond B Biol Sci, 2010, 365(1546): 1517–1535
Pubmed
[30]
Carreau S, Bouraima-Lelong  H, Delalande C. Estrogens in male germ cells[J]. Spermatogenesis, 2011, 1(2): 90–94
Pubmed
[31]
Carreau S, Bouraima-Lelong  H, Delalande C. Estrogen, a female hormone involved in spermatogenesis[J]. Adv Med Sci, 2012, 57(1): 31–36
Pubmed
[32]
Carreau S, Bois  C, Zanatta L, Estrogen signaling in testicular cells[J]. Life Sci, 2011, 89(15-16): 584–587
Pubmed
[33]
Robertson KM, O’Donnell  L, Simpson ER, The phenotype of the aromatase knockout mouse reveals dietary phytoestrogens impact significantly on testis function[J]. Endocrinology, 2002, 143(8): 2913–2921
Pubmed
[34]
Juan ME, González-Pons  E, Munuera T, trans-Resveratrol, a natural antioxidant from grapes, increases sperm  output  in  healthy rats[J].  J  Nutr,  2005,  135(4): 757–760
Pubmed
[35]
Turner RT, Evans  GL, Zhang M, Is resveratrol an estrogen agonist in growing rats[J]? Endocrinology, 1999, 140(1): 50–54
Pubmed
[36]
Eumkeb G, Tanphonkrang  S, Sirichaiwetchakoon K, The synergy effect of daidzein and genistein isolated from Butea superba Roxb. on the reproductive system of male mice[J]. Nat Prod Res, 2017, 31(6): 672–675
Pubmed
[37]
Hart JE. Endocrine pathology of estrogens: species differences[J]. Pharmacol Ther, 1990, 47(2): 203–218
Pubmed
[38]
Cederroth CR, Zimmermann  C, Beny JL, Potential detrimental effects of a phytoestrogen-rich diet on male fertility in mice[J]. Mol Cell Endocrinol, 2010, 321(2): 152–160
Pubmed
[39]
Blake C, Hansen  T, Simmons TC, Long time exposure to soy/isoflavone-rich diet enhances testicular and prostate health in Long-Evans rats[J]. J Funct Foods, 2013, 5: 1494–1501.
[40]
McClain RM, Wolz  E, Davidovich A, Reproductive safety studies with genistein in rats[J]. Food Chem Toxicol, 2007, 45(8): 1319–1332
Pubmed
[41]
Korach KS. Insights from the study of animals lacking functional estrogen receptor[J]. Science, 1994, 266(5190): 1524–1527
Pubmed
[42]
Strom BL, Schinnar  R, Ziegler EE, Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood[J]. JAMA, 2001, 286(7): 807–814
Pubmed
[43]
Merritt RJ, Jenks  BH. Safety of soy-based infant formulas containing isoflavones: the clinical evidence[J]. J Nutr, 2004, 134(5): 1220S–1224S
Pubmed

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved.
PDF(307 KB)

Accesses

Citations

Detail

Sections
Recommended

/