Ginger extract attenuates ethanol-induced pulmonary histological changes and oxidative stress in rats

Alireza Shirpoor, Farzaneh Hosseini Gharalari, Yousef Rasmi, Elaheh Heshmati

PDF(300 KB)
PDF(300 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (6) : 521-527. DOI: 10.7555/JBR.31.20160151
Original Article
Original Article

Ginger extract attenuates ethanol-induced pulmonary histological changes and oxidative stress in rats

Author information +
History +

Abstract

Chronic ethanol consumption is associated with changes in the function and structure of the lungs. The aim of this study was to investigate the effect of chronic ethanol exposure on the lungs and whether ginger extract mitigated pulmonary abnormalities induced by ethanol in rats. Male Wistar rats were divided into the control group, the ethanol group, and the ethanol plus ginger extract group. Six weeks of ethanol treatment increased the proliferation of lung cells, and induced fibrosis, inflammation and leukocyte infiltration. A significant rise in the level of 8-hydroxydeoxyguanosine, NADPH oxidase, and oxidized low-density lipoprotein was also observed. Ginger extract significantly ameliorated the above changes. These findings indicate that ethanol induces abnormalities in the lungs by oxidative DNA damage and oxidative stress, and that these effects can be alleviated by ginger, which may function as an antioxidant and anti-inflammatory agent.

Keywords

ethanol / lung / oxidative stress / DNA damage / rat / fibrosis / ginger

Cite this article

Download citation ▾
Alireza Shirpoor, Farzaneh Hosseini Gharalari, Yousef Rasmi, Elaheh Heshmati. Ginger extract attenuates ethanol-induced pulmonary histological changes and oxidative stress in rats. Journal of Biomedical Research, 2017, 31(6): 521‒527 https://doi.org/10.7555/JBR.31.20160151

References

[1]
Moss M, Parsons  PE, Steinberg KP , Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock[J]. Crit Care Med, 2003, 31(3): 869–877.
Pubmed
[2]
Nelson S, Kolls  JK. Alcohol, host defence and society[J]. Nat Rev Immunol, 2002, 2(3): 205–209.
Pubmed
[3]
Shirpoor A, Nemati  S, Ansari MH , The protective effect of vitamin E against prenatal and early postnatal ethanol treatment–induced heart abnormality in rats: a 3–month follow–up study[J]. Int Immunopharmacol, 2015, 26(1): 72–79.
Pubmed
[4]
Polikandriotis JA, Rupnow  HL, Brown LA , Chronic ethanol ingestion increases nitric oxide production in the lung[J]. Alcohol, 2007, 41(5): 309–316.
Pubmed
[5]
Brown LA, Harris  FL, Ping XD , Chronic ethanol ingestion and the risk of acute lung injury: a role for glutathione availability[J]? Alcohol, 2004, 33(3): 191–197
Pubmed
[6]
Shirpoor A, Rezaei  F, Fard AA , Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration[J]. Biomed Pharmacother, 2016, 84: 698–704.
Pubmed
[7]
Ilkhanizadeh B, Shirpoor  A, Khadem Ansari MH, Protective effects of ginger (Zingiber officinale) extract against diabetes–induced heart abnormality in rats[J]. Diabetes Metab J, 2016, 40(1): 46–53.
Pubmed
[8]
Sozo F, O'Day  L, Maritz G , Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(3): L510–L518.
Pubmed
[9]
Ashcroft T, Simpson  JM, Timbrell V . Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4): 467–470.
Pubmed
[10]
Brown LA, Harris  FL, Bechara R , Effect of chronic ethanol ingestion on alveolar type II cell: glutathione and inflammatory mediator–induced apoptosis[J]. Alcohol Clin Exp Res, 2001, 25(7): 1078–1085.
Pubmed
[11]
Polikandriotis JA, Rupnow  HL, Elms SC , Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung[J]. Am J Respir Cell Mol Biol, 2006, 34(3): 314–319.
Pubmed
[12]
Vaid M, Katiyar  SK. Grape seed proanthocyanidins inhibit cigarette smoke condensate–induced lung cancer cell migration through inhibition of NADPH oxidase and reduction in the binding of p22(phox) and p47(phox) proteins[J]. Mol Carcinog, 2015, 54(Suppl 1): E61–E71.
Pubmed
[13]
Henkels KM, Muppani  NR, Gomez–Cambronero J. PLD–specific small–molecule inhibitors decrease tumor–associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases[J]. PLoS One, 2016, 11(11): e0166553.
Pubmed
[14]
Lee WL, Downey  GP. Neutrophil activation and acute lung injury[J]. Curr Opin Crit Care, 2001, 7(1): 1–7.
Pubmed
[15]
Way KJ, Katai  N, King GL . Protein kinase C and the development of diabetic vascular complications[J]. Diabet Med, 2001, 18(12): 945–959.
Pubmed
[16]
Hand WL, Hand  DL, Vasquez Y . Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes[J]. Diabetes Res Clin Pract, 2007, 76(1): 44–50.
Pubmed
[17]
Hardie WD, Glasser  SW, Hagood JS . Emerging concepts in the pathogenesis of lung fibrosis[J]. Am J Pathol, 2009, 175(1): 3–16.
Pubmed
[18]
Roman J, Ritzenthaler  JD, Bechara R , Ethanol stimulates the expression of fibronectin in lung fibroblasts via kinase–dependent signals that activate CREB[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(5): L975–L987.
Pubmed
[19]
Palanisamy GS, Kirk  NM, Ackart DF , Uptake and accumulation of oxidized low–density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs[J]. PLoS One, 2012, 7(3): e34148.
Pubmed
[20]
Tamada K, Shimozaki  K, Chapoval AI , LIGHT, a TNF–like molecule, costimulates T cell proliferation and is required for dendritic cell–mediated allogeneic T cell response[J]. J Immunol, 2000, 164(8): 4105–4110.
Pubmed
[21]
Greig FH, Kennedy  S, Spickett CM . Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation[J]. Free Radic Biol Med, 2012, 52(2): 266–280.
Pubmed
[22]
Shirpoor A, Salami  S, Khadem Ansari MH, Ethanol promotes rat aortic vascular smooth muscle cell proliferation via increase of homocysteine and oxidized–low–density lipoprotein[J]. J Cardiol, 2013, 62(6): 374–378.
Pubmed
[23]
Natarajan V, Scribner  WM, Hart CM , Oxidized low density lipoprotein–mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis[J]. J Lipid Res, 1995, 36(9): 2005–2016.
Pubmed
[24]
Qin B, Cao  Y, Yang H , MicroRNA–221/222 regulate ox–LDL–induced endothelial apoptosis via Ets–1/p21 inhibition[J]. Mol Cell Biochem, 2015, 405(1–2): 115–124.
Pubmed
[25]
Jiang JX, Zhang  SJ, Liu YN , EETs alleviate ox–LDL–induced inflammation by inhibiting LOX–1 receptor expression in rat pulmonary arterial endothelial cells[J]. Eur J Pharmacol, 2014, 727: 43–51.
Pubmed
[26]
Kasai H. Analysis of a form of oxidative DNA damage, 8–hydroxy–2′–deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis[J]. Mutat Res, 1997, 387(3): 147–163. 
Pubmed
[27]
Mallikarjuna K, Sahitya Chetan  P, Sathyavelu Reddy K, Ethanol toxicity: rehabilitation of hepatic antioxidant defense system with dietary ginger[J]. Fitoterapia, 2008, 79(3): 174–178.
Pubmed
[28]
Nasri H, Nematbakhsh  M, Ghobadi S , Preventive and curative effects of ginger extract against histopathologic changes of gentamicin–induced tubular toxicity in rats[J]. Int J Prev Med, 2013, 4(3): 316–321.
Pubmed
[29]
Isa Y, Miyakawa  Y, Yanagisawa M , 6–Shogaol and 6–gingerol, the pungent of ginger, inhibit TNF–alpha mediated downregulation of adiponectin expression via different mechanisms in 3T3–L1 adipocytes[J]. Biochem Biophys Res Commun, 2008, 373(3): 429–434.
Pubmed
[30]
Rafieian–Kopaei M ,  Nasri H . Ginger and diabetic nephropathy[J]. J Renal Inj Prev, 2013, 2(1): 9–10.
Pubmed
[31]
Rafieian–Kopaei M ,  Nasri H . The ameliorative effect of zingiber officinale in diabetic nephropathy[J]. Iran Red Crescent Med J, 2014, 16(5): e11324.
Pubmed

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. 
PDF(300 KB)

Accesses

Citations

Detail

Sections
Recommended

/