Electromyography and Fos immunostaining study establish a possible functional link between trigeminal proprioception and the oculomotor system in rats

Houcheng Liang , Jingdong Zhang , Pifu Luo , Hongna Zhu , Ying Qiao , Anle Su , Ting Zhang

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 256 -263.

PDF (301KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 256 -263. DOI: 10.7555/JBR.31.20160127
Original Article
Original Article

Electromyography and Fos immunostaining study establish a possible functional link between trigeminal proprioception and the oculomotor system in rats

Author information +
History +
PDF (301KB)

Abstract

The objective of this study was to explore whether there was a functional link between trigeminal proprioception and the oculomotor system mediated through jaw muscle afferents. Electromyography (EMG) was undertaken of the levator palpebrae (LP) and superior rectus (SR), and Fos expression was detected in the brainstem following consecutive down-stretching of the lower jaw at 2-4 Hz in rats. Retrograde tracing was undertaken of the interstitial nucleus of Cajal and Darkschewitsch nucleus (INC/DN) pre-oculomotor neurons. EMG-like responses were recorded from the LP/SR during down-stretching of the lower jaw at 2-4 Hz in 3 out of 11 rats. Fos expression was induced by consecutive down-stretching of the lower jaw at 2-4 Hz for 20-30 seconds. Interestingly, Fos expression was distributed mainly in the bilateral INC/DN area. We also examined Fos-like immunoreactivity in central mesencephalic and paramedian pontine reticular formation that harbors premotor neurons controlling horizontal eye movement, but no Fos-like staining was observed therein. By injection of retrograde tracers into the oculomotor nucleus combined with Fos immunostaining, double labeled pre-oculomotor neurons were visualized to distribute in the INC/DN. In conclusions, there may exist a trigeminal proprioceptive – oculomotor system neural circuit through jaw muscle afferents in rats. Judging from Fos distribution pattern, this pathway might be related to vertical and torsional eye movements.

Keywords

Marcus Gunn syndrome / down-stretching lower jaw / levator and superior rectus / electromyography / interstitial nucleus of Cajal and Darkschewitsch nucleus / Fos expression

Cite this article

Download citation ▾
Houcheng Liang, Jingdong Zhang, Pifu Luo, Hongna Zhu, Ying Qiao, Anle Su, Ting Zhang. Electromyography and Fos immunostaining study establish a possible functional link between trigeminal proprioception and the oculomotor system in rats. Journal of Biomedical Research, 2017, 31(3): 256-263 DOI:10.7555/JBR.31.20160127

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Materials and methods

Animals

Preparation for LP/SR electromyogram (EMG) recording

Induction of Fos expression by repeated down-stretching of the lower jaw

Retrograde and Fos double labeling of pre-oculomotor neurons

Results

EMG-like activities in the LP/SR evoked by repeated down-stretching of the lower jaw

Fos expression neurons in the midbrain and pons

Fos expression in tracer-labeled INC/DN pre-oculomotor neurons

Discussion

A clinical fact that has been overlooked for a long time is that some MGS cases showed trigeminal oculomotor synkinesis only temporally in life and some other MGS exhibit a pattern of alternative healing and relapse[-,-]. How could we explain these phenomena by hypothesis that trigeminal oculomotor synkinesis is caused by congenital miswiring of trigeminal motor branch into oculomotor nerve? Interestingly, a group of authors demonstrated that eyelid retraction was elicited by electrical stimulation of the ipsilateral trigeminal motor root in humans that suffered trigeminal neuralgia without any history of congenital ptosis[]. We observed in healthy human volunteers that static jaw occlusion evoked EMG-like activities and the waveform and frequency of muscle activities were unequivocally similar to the EMG recorded from the same electrode when the volunteer actively looked upward with the head fixed[], namely, when the eyelid was retracting. This data suggests an intrinsic linkage between masticatory and oculomotor system even in healthy humans[,]. A neuronal tract tracing study in Xenopus laevis unveiled that the Vme neurons project their central axons to the III/IV, and meanwhile send peripheral processes to the temporalis, the largest masticator inX. laevis[]. This anatomic data suggests masticatory muscle spindle afferent Vme neurons project to the III/IV directly in amphibians. Meanwhile, a trigeminal oculomotor reflex with widely opening the mouth and eyes simultaneously is a normal reflex inX. laevis that helps this creature to target the prey and shoot its tongue[]. Is it possible that this reflex has been functionally distinguished during phylogenetic development but a residue of reflexive neural pathway still exists to some extent? To explore this question, we selected a rat as a mammal to investigate whether there is a functional link between masticator proprioception and oculomotor eyelid control system. Our current results indeed imply a functional association between these two systems but not in all of rats: down-stretching lower jaw induced EMG-like activity in LP/SR was recorded in about 27% (3/11) of tested rats, and Fos expression was induced in 75% (3/4) of these rats.

As we know, passively elongating jaw closing muscles will activate their muscle spindles and in-turn their afferent Vme neurons, even under systematic anesthesia in cats and rats[-]. The jaw displacement approach has been generally used in studies of the jaw muscle spindle afferents pathway[,]. Stretching the lower jaw by pressing down the rat's lower teeth achieves similar effect as displacement apparatus was performed; however, squeezing periodontal ligaments of the lower teeth might be another possibility to excite the Vme neurons. In other words, the Vme afferent neurons innervating periodontal ligament mechanoreceptors might also be involved in generating excitatory afferent impulse. Based on a previous study[], not all of jaw muscle spindle afferents are stretching sensitive neurons; hence, it is possible that distribution of stretching sensitive neurons might not be the same in different animals or different physiologic status. Is this the reason for negative results from most of the rats in our current work? We assumed the predominant reason might be the extent of structural residue preserved for the masticator oculomotor reflex. Furthermore, it is known that following functional related stimulation,c-Fos oncogene and Fos proteins are usually expressed along the functional pathway[]. For example, taste related stimulation induced Fos expression in neurons along the visceral sensation central pathway[-]; however, nociceptive stimulation evoked Fos production among neurons of the nociception conveying central pathway[-]. As aforementioned, down-stretching of the lower jaw predominantly motivates jaw muscle spindle afferents[-]; therefore, Fos expression should be associated with trigeminal proprioception conductance. Consequently, this pathway seems to not be completely without function. It has been well documented that the INC is a pre-oculomotor center that controls vertical-torsional eye and head movements and the DN is a member of accessory pre-oculomotor nuclei reported in early studies[-,]. It was also known that premotor neurons modulate horizontal eye movements and are situated in the CCRF/PPRF[-]. Intriguingly, Fos was expressed exclusively in the INC/DN following the lower jaw stretching stimulation but was not observed in areas of CCRF/PPRF, suggesting that this pathway be probably related to vertical-torsional eye and head movements. In fact, modulation of the eyelid action is involved in controlling vertical eye and head movement[,-].

On the other hand, a group of scholars reported that some Vme neurons innervate mechanoreceptors of Mueller's muscle in the superior tarsal plate and the central axons of these Vme neurons project to the III and terminate on the LP motoneurons that innervate slow-twitch skeletal muscle part of the LP in rats[-]. A neural tract tracing study in Macaque monkey also revealed a limited number of labeled Vme neurons following injection of retrograde tracers into the LP and SR[]. Those authors had demonstrated that these tarsal plate Vme afferents somata form a gap-junction connecting to adjacent periodontal and/or jaw muscle spindle Vme neurons because gap-junction-permeable dye spread from tarsal plate Vme afferents to adjacent Vme neurons[]. These findings give rise to another possible interpretation for our current results: following injection of tracers into the Vme in our previous work[,], anterograde labeled projections to the III/IV and INC/DN might be from tarsal plate Vme neurons[,] or maybe not; or fewer jaw muscle spindle afferents as we had expected. Electrotonic coupling through gap-junction between the Vme neurons had been well documented decades ago[]. Moreover, somatofugal action potentials were recorded from those been coupled Vme neurons when the electric tone reaches the threshold to discharge action potentials[-]. Therefore, if jaw muscle spindle afferent Vme neurons, or probably some periodontal afferents were fired by repeated jaw stretching or pushing against periodontal ligaments, it was possible that the neighboring tarsal plate afferent Vme neurons were excited through electrotonic coupling mechanism[-]. Then, LP motoneurons in the III might be excited by the input from the tarsal plate afferent Vme neurons, those being coupled with jaw muscle spindle or periodontal proprioceptive Vme neurons.

References

[1]

Brodsky CM. Pediatric Neuro-Ophthalmology[M]. Second ed. New York, Dordrecht, Heidelberg, London: Springer; 2010.

[2]

Pratt SGBeyer  CKJohnson CC . The Marcus Gunn phenomenon. A review of 71 cases[J]. Ophthalmology198491(1): 27–30.

[3]

Saitkowski RMGlaser  JS. Pediatric neuro-ophthalmology: General considerations and congenital motor and sensory anomalies[M]. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 1999.

[4]

Engle EC. Oculomotility disorders arising from disruptions in brainstem motor neuron development[J]. Arch Neurol200764(5): 633–637.

[5]

Hotchkiss MGMiller  NRClark AW Bilateral Duane's retraction syndrome[J]. A clinical-pathologic case report. Arch Ophthalmol198098(5): 870–874.

[6]

Volk AEFricke  JStrobl J Analysis of the CHN1 gene in patients with various types of congenital ocular motility disorders[J]. Graefes Arch Clin Exp Ophthalmol2010248(9): 1351–1357.

[7]

Tischfield MABaris  HNWu C Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance[J]. Cell2010140(1): 74–87.

[8]

Pieh CGoebel  HHEngle EC Congenital fibrosis syndrome associated with central nervous system abnormalities[J]. Graefes Arch Clin Exp Ophthalmol2003241(7): 546–553

[9]

Conte ABrancati  FGaraci F Kinematic and diffusion tensor imaging definition of familial Marcus Gunn jaw-winking synkinesis[J]. PLoS One20127(12): e51749

[10]

Basu APBellis  PWhittaker RG Teaching NeuroImages: alternating ptosis and Marcus Gunn jaw-winking phenomenon with PHOX2B mutation[J]. Neurology201279(17): e153

[11]

Nakano MYamada  KFain J Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2[J]. Nat Genet200129(3): 315–320.

[12]

Pattyn AMorin  XCremer H Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis[J]. Development1997124: 4065–4075.

[13]

Sona K. Trigemino-oculomotor synkinesis[J]. Neurologia19591: 29–51.

[14]

Wartenberg R. Winking-jaw phenomenon[J]. Arch Neurol Psychiatry194859(6): 734–753.

[15]

Sona K. Section of the portio minor of the trigeminal nerve for the treatment of the Marcus Gunn phenomenon[J]. Mod Probl Paediatr197718: 258–262.

[16]

Lehman AMDong  CCHarries AM Evidence of ancillary trigeminal innervation of levator palpebrae in the general population[J]. J Clin Neurosci201421(2): 301–304.

[17]

Hiscock JStraznicky  C. Peripheral and central terminations of axons of the mesencephalic trigeminal neurons in Xenopus[J]. Neurosci Lett198232(3): 235–240.

[18]

Luo PFWang  BRPeng ZZ Morphological characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat: an intracellular horseradish peroxidase labeling study[J]. J Comp Neurol1991303(2): 286–299.

[19]

Zhang JLiang  HLuo P Unraveling a masticatory- oculomotor neural pathway in rat: Implications for a pathophysiological neural circuit in human[J]? Int J Physiol Pathophysiol Pharmacol20113: 280–287.

[20]

Fukushima K. The interstitial nucleus of Cajal and its role in the control of movements of head and eyes[J]. Prog Neurobiol198729(2): 107–192.

[21]

Sharpe JA. Neural control of ocular motor system: Walsh and Hoyt’s Clinical neuroophthalmology[M]. Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott Williams & Wilkins, 1998.

[22]

Buttner-Ennever JA . Neuroanatomy of the oculomotor system[M].Amsterdam: Elsevier, 1988.

[23]

Iliff CE. The optimum time for surgery in the Marcus Gunn phenomenon[J]. Trans Am Acad Ophthalmol Otolaryngol197074: 1005–1010.

[24]

Awan KJ. Marcus gunn (jaw-winking) syndrome[J]. Am J Ophthalmol197682(3): 503–504.

[25]

Liang HSong  JShen D Co-firing of levator palpebrae and masseter muscles links the masticatory and oculomotor system in humans[J]. J Biomed Res201529: 316–320.

[26]

Cody FWHarrison  LM. Responses of cat jaw muscle spindles to passive stretching over the masticatory range[J]. J Physiol1975245: 67–68.

[27]

Luo PDessem  D. Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat: a double-labeling study using retrograde HRP and intracellular biotinamide[J]. J Comp Neurol1995353(1): 50–66.

[28]

Dessem DDonga  RLuo P . Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions[J]. J Neurophysiol199777: 2925–2944.

[29]

Hunt SPPini  AEvan G . Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation[J]. Nature1987328(6131): 632–634.

[30]

King CTGarcea  MSpector AC . Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats[J]. J Comp Neurol2014522(11): 2498–2517.

[31]

Travers SPTravers  JB. Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat[J]. J Comp Neurol2007500(4): 746–760.

[32]

Ferrini FRusso  ASalio C . Fos and pERK immunoreactivity in spinal cord slices: Comparative analysis of in vitro models for testing putative antinociceptive molecules[J]. Ann Anat2014196(4): 217–223.

[33]

Chen YKLei  JJin L Dynamic variations of c-Fos expression in the spinal cord exposed to intramuscular hypertonic saline-induced muscle nociception[J]. Eur J Pain201317(3): 336–346.

[34]

Carpenter MBHarbison  JWPeter P . Accessory oculomotor nuclei in the monkey: projections and effects of discrete lesions[J]. J Comp Neurol1970140(2): 131–153.

[35]

Fujita KMatsuo  KYuzuriha S Cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator muscle are located in the mesencephalic trigeminal nucleus in rats[J]. J Plast Surg Hand Surg201246(6): 383–388.

[36]

Ban RMatsuo  KOsada Y Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography[J]. J Plast Reconstr Aesthet Surg201063(1): 59–64.

[37]

Wang NMay  PJ. Peripheral muscle targets and central projections of the mesencephalic trigeminal nucleus in macaque monkeys[J]. Anat Rec (Hoboken)2008291(8): 974–987.

[38]

Baker RLlinas  R. Electrotonic coupling between neurones in the rat mesencephalic nucleus[J]. J Physiol1971212(1): 45–63.

[39]

Curti SHoge  GNagy JI Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus[J]. J Neurosci201232(13): 4341–4359.

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved.

AI Summary AI Mindmap
PDF (301KB)

556

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/