Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers

Anam Akhtar , Scarlet Xiaoyan Wang , Lucy Ghali , Celia Bell , Xuesong Wen

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 177 -188.

PDF (268KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 177 -188. DOI: 10.7555/JBR.31.20160059
Review Article
Review Article

Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers

Author information +
History +
PDF (268KB)

Abstract

Since arsenic trioxide was first approved as the front line therapy for acute promyelocytic leukemia 25 years ago, its anti-cancer properties for various malignancies have been under intense investigation. However, the clinical successes of arsenic trioxide in treating hematological cancers have not been translated to solid cancers. This is due to arsenic's rapid clearance by the body's immune system before reaching the tumor site. Several attempts have henceforth been made to increase its bioavailability toward solid cancers without increasing its dosage albeit without much success. This review summarizes the past and current utilization of arsenic trioxide in the medical field with primary focus on the implementation of nanotechnology for arsenic trioxide delivery to solid cancer cells. Different approaches that have been employed to increase arsenic's efficacy, specificity and bioavailability to solid cancer cells were evaluated and compared. The potential of combining different approaches or tailoring delivery vehicles to target specific types of solid cancers according to individual cancer characteristics and arsenic chemistry is proposed and discussed.

Keywords

arsenic trioxide / solid cancer / nanotechnology / drug delivery / liposome

Cite this article

Download citation ▾
Anam Akhtar, Scarlet Xiaoyan Wang, Lucy Ghali, Celia Bell, Xuesong Wen. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. Journal of Biomedical Research, 2017, 31(3): 177-188 DOI:10.7555/JBR.31.20160059

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Arsenic trioxide (ATO) history: rise, decline and resurgence

Therapeutic strategies in using ATO alone or in combination

Glutathione depleting agents

Ionising radiation

Non-steroidal anti-inflammatory drugs (NSAIDs)

Encapsulation of ATO as a single agent or co-encapsulated with another drug

Liposome encapsulation

Nanobins

Thermosensitive liposomes

Arsonoliposomes

Polymersome encapsulation

Nanoparticle mediated siRNA and arsenic co-therapy

Other nanoparticles

ATO magnetic nanoparticles

ATO albumin microspheres

ATO loaded silica nanoparticles

Arsenoplatins

Others

Conclusion

References

[1]

Shen SLi  XFCullen WR Arsenic binding to proteins[J]. Chem Rev2013113(10): 7769–7792

[2]

Miller WHJr, Schipper  HMLee JS Mechanisms of action of arsenic trioxide[J]. Cancer Res200262(14): 3893–3903

[3]

Wang SWu  XTan M Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy[J]. J Ethnopharmacol2012140(1): 33–45

[4]

Evens AMTallman  MSGartenhaus RB . The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future[J]. Leuk Res200428(9): 891–900

[5]

Shen ZXChen  GQNi JH , and the Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients[J]. Blood199789(9): 3354–3360

[6]

Antman KH. Introduction: the history of arsenic trioxide in cancer therapy[J]. Oncologist20016(2Suppl 2): 1–2

[7]

Zhang PWang  SYHu XH . Arsenic trioxide treated 72 cases of acute promyelocytic leukemia[J]. Chinese Journal of Hematology199617(1): 58–62.

[8]

Swindell EPHankins  PLChen H Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes[J]. InorgChem201352(21): 12292–12304

[9]

Kang YHLee  SJ. Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation[J]. Oncol Rep200820(3): 637–643

[10]

Zhang LZhang  ZMason RP Convertible MRI contrast: Sensing the delivery and release of antigliomanano-drugs[J]. Sci Rep20155: 1–13.

[11]

Emadi AGore  SD. Arsenic trioxide- An old drug rediscovered[J]. Blood Rev201024(4-5): 191–199

[12]

Grad JMBahlis  NJReis I Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells[J]. Blood200198(3): 805–813

[13]

Gartenhaus RBPrachand  SNPaniaqua M Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state[J]. Clin Cancer Res20028(2): 566–572

[14]

Waxman SAnderson  KC. History of the development of arsenic derivatives in cancer therapy[J]. Oncologist20016(2Suppl 2): 3–10

[15]

Murgo AJ. Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies[J]. Oncologist20016(2Suppl 2): 22–28

[16]

Platanias LC. Biological responses to arsenic compounds[J]. J BiolChem2009284(28): 18583–18587

[17]

Zhao SZhang  XZhang J Intravenous administration of arsenic trioxide encapsulated in liposomes inhibits the growth of C6 gliomas in rat brains[J]. J Chemother200820(2): 253–262

[18]

Maeda HHori  SOhizumi H Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine[J]. Cell Death Differ200411(7): 737–746

[19]

Kim HRKim  EJYang SH Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction[J]. Int J Oncol200628(6): 1401–1408

[20]

Ahn RWBarrett  SLRaja MR Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo[J]. PLoS One20138(3): e58491

[21]

Ahn RWChen  FChen H A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer[J]. Clin Cancer Res201016(14): 3607–3617

[22]

Chen HMacDonald  RCLi S Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release[J]. J Am ChemSoc2006128(41): 13348–13349

[23]

Zhang YKenny  HASwindell EP Urokinase plasminogen activator system-targeted delivery of nanobins as a novel ovarian cancer therapy[J]. Mol Cancer Ther201312(12): 2628–2639

[24]

Wang XLi  DGhali L Therapeutic potential of delivering arsenic trioxide into HPV-infected cervical cancer cells using liposomal nanotechnology[J]. Nanoscale Res Lett201611(1): 94

[25]

Winter NDMurphy  RKJO'Halloran TV Development and modeling of arsenic-trioxide-loaded thermosensitive liposomes for anticancer drug delivery[J]. J Liposome Res201121(2): 106–115

[26]

Chen HAhn  RVan den Bossche  J Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide[J]. Mol Cancer Ther20098(7): 1955–1963

[27]

Gortzi OPapadimitriou  EKontoyannis CG Arsonoliposomes, a novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture[J]. Pharm Res200219(1): 79–86

[28]

Wang ZLiu  WXu H Preparation and in vitro Studies of Stealth PEGylated PLGA Nanoparticles as Carriers for Arsenic Trioxide[J]. Chin J ChemEng200715(6): 795–801.

[29]

Qian CWang  YChen Y Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles[J]. Biomaterials201334(26): 6175–6184

[30]

Zhang QVakili  MRLi XF Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells[J]. Biomaterials201435(25): 7088–7100

[31]

Wimmer NRobinson  JAGopisetty-Venkatta N Novel Glyco-lipid-arsenicals (III) with Anti-proliferative Effects on MCF-7 Human Breast Cancer Cells[J].  Understanding Biology Using Peptides.Springer New York, 2006, 365–366.

[32]

Lee SMChen  HO'Halloran TV "Clickable" polymer-caged nanobins as a modular drug delivery platform[J]. J Am ChemSoc2009131(26): 9311–9320

[33]

Wang LWang  ZLiu J Preparation of a new nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposome and its antitumor effect on MDA_MB_231 cells[J]. J NanosciNanotechnol201111(12): 10755–10759

[34]

Miodragović ÐU Quentzel JA Kurutz JW Robust structure and reactivity of aqueous arsenous acid-platinum(II) anticancer complexes[J]. AngewChemInt Ed Engl201352(41): 10749–10752

[35]

Muhammad FZhao  JWang N Lethal drug combination: arsenic loaded multiple drug mesoporous silica for theranostic applications[J]. Colloids Surf B Biointerfaces2014123: 506–514

[36]

Zeng LLi  JWang Y Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer[J]. Nanomedicine201410(2): 463–472

[37]

Du YZhang  DLiu H Thermochemotherapy effect  of  nanosized As2O3/Fe3O4  complex  on  experimental  mouse  tumors  and  its  influence on  the  expression  of CD44v6, VEGF-C and MMP-9[J]. BMC Biotechnol20099(1): 84

[38]

Jadhav VSachar  SChandra S Synthesis and Characterization of Arsenic Trioxide Nanoparticles and Their In Vitro Cytotoxicity Studies on Mouse Fibroblast and Prostate Cancer Cell Lines[J]. J NanosciNanotechnol201515: 1–7

[39]

Zhao ZZhang  HChi X Silica nanovehicles endow arsenic trioxide with an ability to effectively treat cancer cells and solid tumours[J]. J Mater Chem B Mater Biol Med20142(37): 6313–6323.

[40]

Milas L. Cyclooxygenase-2 (COX-2) enzyme inhibitors as potential enhancers of tumor radioresponse[J]. SeminRadiatOncol200111(4): 290–299

[41]

Soriano AFHelfrich  BChan DC Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines[J]. Cancer Res199959(24): 6178–6184

[42]

Mandegary ATorshabi  MSeyedabadi M Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways[J].  BioMed Research International,20132013: 1–9.

[43]

Farokhzad OCLanger  R. Impact of nanotechnology on drug delivery[J]. ACS Nano20093(1): 16–20

[44]

Soussan ECassel  SBlanzat M Drug delivery by soft matter: matrix and vesicular carriers[J]. AngewChemInt Ed Engl200948(2): 274–288

[45]

Griffin RJMonzen  HWilliams BW Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours[J]. Int J Hyperthermia200319(6): 575–589

[46]

Needham DPonce  AMWright A Targeted bioavailability of drugs by triggered release from liposomes[J]. Future Lipidol20061(1): 25–34.

[47]

Koutsopoulos SFatouros  DGIoannou PV Thermal behavior of novel non-sonicated arsonolipid-containing liposomes[J]. BiophysChem2006121(2): 150–154

[48]

Fatouros DGIoannou  PVAntimisiaris SG . Arsonoliposomes: novel nanosized arsenic-containing vesicles for drug delivery[J]. J NanosciNanotechnol20066(9-10): 2618–2637

[49]

Salnikow KDonald  SPBruick RK Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress[J]. J BiolChem2004279(39): 40337–40344

[50]

Jones SZhang  XParsons DW Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science2008321(5897): 1801–1806

[51]

Yang Guo-FuLXH Zhao  Zhe Characterization and Tissue Pharmacokinetics in Mice of Arsenic Trioxide Magnetic Nanoparticles[J]. Chemical Journal of Chinese Universities,20105: 010.

[52]

Song XYou  JWang J Preparation and investigation of arsenic trioxide-loaded polylactic acid/magnetic hybrid nanoparticles[J]. Chem Res Chin Univ201430(2): 326–332.

[53]

Yang ZYang  MPeng J . Evaluation of arsenic trioxide-loaded albumin nanoparticles as carriers: preparation and antitumor efficacy[J]. Drug Dev Ind Pharm200834(8): 834–839

[54]

Zhou JZeng  FXiang G Preparation of arsenic trioxide albumin microspheres and its release characteristics in vitro.[Medical Sciences][J]. J HuazhongUnivSciTechnolog Med Sci200525(3): 310–312., 319

[55]

Zhou JWang  QHLiu JH Effects of Tat peptide on intracellular delivery of arsenic trioxide albumin microspheres[J]. Anticancer Drugs201223(3): 303–312

[56]

Jadhav VRay  PSachdeva G Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21(WAF1/CIP1) expression via epigenetic remodeling in LNCaP and PC3 cell lines[J]. Life Sci2016148: 41–52

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved

AI Summary AI Mindmap
PDF (268KB)

2023

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/