Ginkgol C17:1 inhibits tumor growth by blunting the EGF- PI3K/Akt signaling pathway

Yueying Li , Jun Liu , Xiaoming Yang , Yan Dong , Yali Liu , Min Chen

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 232 -239.

PDF (332KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 232 -239. DOI: 10.7555/JBR.31.20160039
Original Article
Original Article

Ginkgol C17:1 inhibits tumor growth by blunting the EGF- PI3K/Akt signaling pathway

Author information +
History +
PDF (332KB)

Abstract

Ginkgol C17:1 has been shown to inhibit apoptosis and migration of cancer cells, but the underlying mechanisms are not fully elucidated. In this study, we explored whether the inhibitory effects of Ginkgol C17:1 were associated with epidermal growth factor receptor (EGFR) and PI3K/Akt signaling. The results showed that EGF treatment increased the phosphorylation of EGFR, PI3K, Akt, mTOR and NF-kB, and also enhanced the proliferation, migration and invasion of HepG2 cells. Ginkgol C17:1 dose-dependently inhibited EGF-induced phosphorylation/activation of all the key components including EGFR, PI3K, Akt, mTOR and NF-kB, leading to a significant reduction either of proliferation or migration and invasion of HepG2 cells. Notably, treatment with Ginkgol C17:1 in mice suppressed the growth of tumor massin vivo, and expression of EGFR in the tumor tissue. The results suggest that Ginkgol C17:1 is a potent tumor inhibiting compound that acts on EGF-induced signal transduction of the PI3K/Akt signaling pathways, and may represent a clinically interesting candidate for cancer therapy.

Keywords

Ginkgol C17:1 / epidermal growth factor / PI3K/Akt / HepG2

Cite this article

Download citation ▾
Yueying Li, Jun Liu, Xiaoming Yang, Yan Dong, Yali Liu, Min Chen. Ginkgol C17:1 inhibits tumor growth by blunting the EGF- PI3K/Akt signaling pathway. Journal of Biomedical Research, 2017, 31(3): 232-239 DOI:10.7555/JBR.31.20160039

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Materials and methods

Cancer cell lines and experimental animals

Reagents

Dulbecco's modified eagle media (DMEM), fetal bovine serum (FBS) and trypsin-EDTA solution were purchased from Gibco Life Technologies (Grand Island, NY, USA). Horseradish peroxidase conjugated secondary antibody (HRP-goat anti-rabbit polyclonal IgG, A0562) was purchased from Beyotime Institute of Biotechnology (Haimen, Jiangsu, China). Electrochemiluminescence (ECL) reagents were bought from Amersham Biosciences (Buckinghamshire, UK). LDH-cytotoxicity colorimetric assay kit II (Cat. #K313-500) was obtained from BioVision, Inc. (Milpitas, CA, USA). EGF and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Rabbit anti-mTOR polyclonal antibody (ab2732) was purchased from Abcom (Cambridge, MA, USA). Rabbit anti-NF-kB p65 (sc-114) and β-actin antibody (sc-47778) polyclonal IgG were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit anti-p-EGFR (Tyr1068, 3777), anti-p-EGFR (Tyr1173, 4407), anti-p-PI3Kp55 (Tyr199, 4228), PI3K p85 (4292) and anti-p-mTOR (Ser2448, 5536) polyclonal antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-EGFR (IM001-0377), rabbit anti-Akt (IM001-0359) and rabbit anti-p-Akt1/2/3 (Tyr315/316/312, IM001-0270) polyclonal antibodies were purchased from ExCell Biology Co., (Shanghai, China). Ginkgol C17:1 (HPLC purity>96.5%) was kindly provided from Dr. Yang at the Laboratory of Food and Biological Engineering School of Jiangsu University[-].

Western blotting assays

MTT assays

Migration assay

In vitro invasion assays

Inhibitory effects of Ginkgol C17:1in vivo

Immunohistochemistry

Statistical analysis

Results

Ginkgol C17:1 inhibits EGF-induced EGFR phosphorylation

Ginkgol C17:1 blocks EGF-induced downstream phosphorylation/activation

Ginkgol C17:1 suppresses EGF-induced cell proliferation, migration and invasion

Anti-tumor effect of Ginkgol C17:1 has inverse relation with EGFR expression

Discussion

References

[1]

Prigent SALemoine  NR. The type 1 (EGFR-related) family of growth factor receptors and their ligands[J]. Prog Growth Factor Res19924(1): 1–24

[2]

Normanno NBianco  CDe Luca A Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment[J]. Endocr Relat Cancer200310(1): 1–21

[3]

Hynes NEMacDonald  G. ErbB receptors and signaling pathways in cancer[J]. Curr Opin Cell Biol200921(2): 177–184

[4]

Sharma SVBell  DWSettleman J Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer20077(3): 169–181

[5]

Boonsai PPhuwapraisirisan  PChanchao C . Antibacterial activity of a cardanol from Thai Apis mellifera propolis[J]. Int J Med Sci201411(4): 327–336

[6]

Meng ZLWei  YXu DM Effect of 2-allylphenol against Botrytis cinerea Pers., and its residue in tomato fruit[J]. Crop Prot200726: 1711–1715.

[7]

Shi QTLiu  HZhang YZ Study on antifeeding activity of ginkgo phenol to cannage caterpillar[J]. Biomass Chem Engineer200943(1): 13–16.

[8]

Trevisan MTPfundstein  BHaubner R Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity[J]. Food Chem Toxicol200644(2): 188–197

[9]

Zhou CLi  XDu W Antitumor effects of ginkgolic acid in human cancer cell occur via cell cycle arrest and decrease the Bcl-2/Bax ratio to induce apoptosis[J]. Chemotherapy201056(5): 393–402

[10]

Sukumari-Ramesh SSingh  NJensen MA Anacardic acid induces caspase-independent apoptosis and radiosensitizes pituitary adenoma cells[J]. J Neurosurg2011114(6): 1681–1690

[11]

Tan WHShen  ZBWang CZ Isolation and identification of alkylphenols from Ginkgo biloba leaves[J]. Chem. Ind. Forest Prod200121(4): 1–6.

[12]

Fang YYYang  XMLi YY Spectroscopic studies on the interaction of bovine serum albumin with Ginkgol C15:1 from Ginkgo biloba L[J]. Luminesceence2015162: 203–211.

[13]

Yang XMWang  YFLi YY Thermal stability of ginkgolic acids from Ginkgo biloba and the effects of ginkgol C17:1 on the apoptosis and migration of SMMC7721 cells[J]. Fitoterapia201498: 66–76

[14]

Wang YFYang  XMLi YY Inhibitory effect of ginkgols on SMMC-7721 liver cancer cells in vitro and liver cancer H22-braring mice in vivo[J]. J Jiangsu Univ (Med Edit) (in China)201323(3):233–237.

[15]

Osaki MOshimura  MIto H . PI3K-Akt pathway: its functions and alterations in human cancer[J]. Apoptosis20049(6): 667–676

[16]

Sun DXCai  ZY. EGFR/PI3K/Akt signaling pathway with tumor[J]. Lab Med201429(7): 768–773.

[17]

Song GOuyang  GBao S . The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med20059(1): 59–71

[18]

Edwards LAThiessen  BDragowska WH Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth[J]. Oncogene200524(22): 3596–3605

[19]

Berg MSoreide  K. EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer: implications for targeted therapy[J]. Discov Med201214(76): 207–214

[20]

Marone RCmiljanovic  VGiese B Targeting phosphoinositide 3-kinase: moving towards therapy[J]. Biochim Biophys Acta20081784(1): 159–185

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved

AI Summary AI Mindmap
PDF (332KB)

627

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/