Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis

Eva Baranovicova, Ema Kantorova, Dagmar Kalenska, Lucia Lichardusova, Michal Bittsan-sky, Dusan Dobrota

PDF(153 KB)
PDF(153 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (4) : 301-305. DOI: 10.7555/JBR.31.20160023
Original Article
Original Article

Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis

Author information +
History +

Abstract

Iron can contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain. We focus on the thalamus as an information transmitter between various subcortical and cortical areas. Thalamic iron seems to follow different rules than iron in other deep gray matter structures and its relation to the clinical outcomes of MS is still indistinct. In our study, we investigated a connection between thalamic iron and patients' disability and course of the disease. The presence of paramagnetic substances in the tissues was tracked by T2* quantification. Twenty-eight subjects with definite MS and 15 age-matched healthy controls underwent MRI examination with a focus on gradient echo sequence. We observed a non-monotonous course of T2* values with age in healthy controls. Furthermore, T2* distribution in MS patients was significantly wider than that of age matched healthy volunteers (P<0.001). A strong significant correlation was demonstrated between T2* distribution spread and the expanded disability status scale (EDSS) (left thalamus:P<0.00005; right thalamus: P<0.005), and multiple sclerosis severity scale (MSSS) (left thalamus: P<0.05; right thalamus: P<0.005). The paramagnetic iron distribution in the thalamus in MS was not uniform and this inhomogeneity may be considered as an indicator of thalamic neurodegeneration in MS.

Keywords

multiple sclerosis / thalamus / iron / relaxometry

Cite this article

Download citation ▾
Eva Baranovicova, Ema Kantorova, Dagmar Kalenska, Lucia Lichardusova, Michal Bittsan-sky, Dusan Dobrota. Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis. Journal of Biomedical Research, 2017, 31(4): 301‒305 https://doi.org/10.7555/JBR.31.20160023

References

[1]
Kurtzke JF. Rating neurologic impairment in multiple sclerosis[J]. Neurology, 1983, 33(11): 1444–1452
CrossRef Google scholar
[2]
Haacke EM, Cheng  NYC, House MJ , Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005, 23(1): 1–25
CrossRef Google scholar
[3]
Hagemeier J, Geurts  JJG, Zivadinov R . Brain iron accumulation in aging and neurodegenerative disorders[J]. Expert Rev Neurother, 2012, 12(12): 1467–1480
CrossRef Google scholar
[4]
Stankiewitz J, Panter  SP, Neema M , Iron in chronic brain disorders[J]. Imaging and Neurotherapeutic Implications. Neurotherapeutics, 2007, 4(3): 371–386
CrossRef Google scholar
[5]
Bradley WG Jr . MR appearance of hemorrhage in the brain[J]. Radiology, 1993, 189(1): 15–26
CrossRef Google scholar
[6]
Stankiewicz JM, Neema  M, Ceccarelli A . Iron and multiple sclerosis[J]. Neurobiol Aging, 2013, 35(2): 51–58.
[7]
Rudko DA, Racosta  JM, Kremenchutzky M . Monitoring increased iron levels in multiple sclerosis using MRI[J]. Future Neurol, 2014, 9(4): 387–391
CrossRef Google scholar
[8]
  Tang MY ,  Chen TW ,  Zhang XM ,  Huang XH . GRE T2* -weighted MRI: Principles and clinical applications BioMed Res Int 2014[J];2014:312142.
[9]
Cohen-Adad J. What can we learn from T2* maps of the cortex[J]? Neuroimage, 2014, 93: 189–200
CrossRef Google scholar
[10]
Cheng HL, Stikov  N, Ghugre NR , Practical medical applications of quantitative MR relaxometry[J]. J Magn Reson Imaging, 2012, 36(4): 805–824
CrossRef Google scholar
[11]
MacKay AL, Vavasour  IM, Rauscher A , MR relaxation in multiple sclerosis[J]. Neuroimaging Clin N Am, 2009, 19(1): 1–26
CrossRef Google scholar
[12]
Langkammer C, Krebs  N, Goessler W , Quantitative MR Imaging of brain iron: A postmortem validation study[J]. Radiology, 2010, 257(2): 455–462
CrossRef Google scholar
[13]
Khalil M, Langkammer  C, Ropele S , Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study[J]. Neurology, 2011, 77(18): 1691–1697.
CrossRef Google scholar
[14]
Ropele S, de Graaf  W, Khalil M , MRI assessment of iron deposition in multiple sclerosis[J]. J Magn Reson Imaging, 2011, 34(1): 13–21.
CrossRef Google scholar
[15]
Walsh AJ, Blevins  G, Lebel RM , Longitudinal MR imaging of iron in multiple sclerosis: An imaging marker of disease[J]. Radiology, 2014, 270(1): 186–196.
CrossRef Google scholar
[16]
Hallgren B, Sourander  P. The effect of the age on the non-heme iron in the human brain[J]. J Neurochem, 1958, 391(1): 41–51.
CrossRef Google scholar
[17]
Ropele S, Kilsdonk  ID, Wattjes MP , Determinants of iron accumulation in deep grey matter of multiple sclerosis patients[J]. Mult Scler J, 2014, 20(13): 1692–1698.
CrossRef Google scholar
[18]
Rashid W, Parkes  LM, Ingle GT , Abnormalities of cerebral perfusion in multiple sclerosis[J]. J Neurol Neurosurg Psychiatry, 2004, 75(9): 1288–1293.
CrossRef Google scholar
[19]
Taher AT, Musallam  KM, Hoffbrand AV . Current strategies in the assessment of iron overload[J]. Eur J Clin Med Oncol, 2010, 3: 30–37.
[20]
St Pierre TG, Clark  PR, Chua-anusorn W . Single spin-echo proton transverse relaxometry of iron-loaded liver[J]. NMR Biomed, 2004, 17(7): 446–458.
CrossRef Google scholar
[21]
Wood JC. Magnetic resonance imaging measurement of iron overload[J]. Curr Opin Hematol, 2007, 3(3): 183–190.
CrossRef Google scholar

Acknowledgments

This work was supported in part by grants of The Slovak Research and Development Agency under the contract No. APVV-14-0088; ITMS 26220220187 and VEGA 1/0287/16.

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved
PDF(153 KB)

Accesses

Citations

Detail

Sections
Recommended

/