Allometric Constraint Predominates Over the Acoustic Adaptation Hypothesis in a Radiation of Neotropical Treefrogs

Moisés Escalona , Pedro Ivo Simões , Alejandro Gonzalez-Voyer , Angela M. Mendoza-Henao , Andressa De Mello Bezerra , Paulo D. P. Pinheiro , Belén Morales , Juan M. Guayasamin , Thiago Carvalho , Juan C. Chaparro , Ignacio De la Riva , Fernando J. M. Rojas-Runjaic , Mauricio Rivera-Correa , Philippe J. R. Kok , Pedro Peloso , Daniel Yudi Miyahara Nakamura , Raúl Maneyro , Santiago Castroviejo-Fisher

Integrative Zoology ›› 2025, Vol. 20 ›› Issue (4) : 763 -773.

PDF
Integrative Zoology ›› 2025, Vol. 20 ›› Issue (4) : 763 -773. DOI: 10.1111/1749-4877.12920
ORIGINAL ARTICLE

Allometric Constraint Predominates Over the Acoustic Adaptation Hypothesis in a Radiation of Neotropical Treefrogs

Author information +
History +
PDF

Abstract

Male frogs emit stereotypical advertisement calls to attract mates and deter conspecific rivals. The evolution of these calls is thought to be linked to anatomical constraints and the acoustic characteristics of their surroundings. The acoustic adaptation hypothesis (AAH) posits that species evolve calls that maximize propagation distance and reduce signal degradation in the environment where they are emitted. We applied phylogenetic comparative analyses to study the association of body size, vegetation density, type of aquatic ecosystem, and calling site on the evolution of acoustic traits in Cophomantini, a large radiation of Neotropical treefrogs (Hylidae). We obtained and analyzed body size, acoustic, and habitat data from a total of 112 species (58% of Cophomantini), using the most inclusive available phylogeny. We found a significant negative correlation between peak frequency, body size, and calling site, but contrary to the predictions of the AAH, we did not find support for associations among call traits and environmental characteristics. Although spectral allometry is explained by an anatomical constraint, it could also be maintained by female choice. We recommend that future studies strive to incorporate factors such as female mate preferences, eavesdropping by predators or parasites, and genetic drift.

Keywords

acoustic communication / anura / bioacoustics / macroevolution / phenotypic evolution

Cite this article

Download citation ▾
Moisés Escalona, Pedro Ivo Simões, Alejandro Gonzalez-Voyer, Angela M. Mendoza-Henao, Andressa De Mello Bezerra, Paulo D. P. Pinheiro, Belén Morales, Juan M. Guayasamin, Thiago Carvalho, Juan C. Chaparro, Ignacio De la Riva, Fernando J. M. Rojas-Runjaic, Mauricio Rivera-Correa, Philippe J. R. Kok, Pedro Peloso, Daniel Yudi Miyahara Nakamura, Raúl Maneyro, Santiago Castroviejo-Fisher. Allometric Constraint Predominates Over the Acoustic Adaptation Hypothesis in a Radiation of Neotropical Treefrogs. Integrative Zoology, 2025, 20(4): 763-773 DOI:10.1111/1749-4877.12920

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen-Ankins, S., and L. Schwarzkopf. 2022. “Using Citizen Science to Test for Acoustic Niche Partitioning in Frogs.” Scientific Reports 12: 2477.

[2]

Barclay, R. M., and R. M. Brigham. 1991. “Prey Detection, Dietary Niche Breadth, and Body Size in Bats: Why Are Aerial Insectivorous Bats so Small?” American Naturalist 137: 693-703.

[3]

Bernal, X. E., A. S. Rand, and M. J. Ryan. 2006. “Acoustic Preferences and Localization Performance of Blood-Sucking Flies (Corethrella Coquillett) to Túngara Frog Calls.” Behavioral Ecology 17: 709-715.

[4]

Bernardy, J. V., I. Melo, D. Llusia, et al. 2024. “Female Preferences for Dominant Frequency in Frogs: Constraints and Impact on Sexual Size Dimorphism.” Behavioral Ecology and Sociobiology 78: 1-9.

[5]

Boncoraglio, G., and N. Saino. 2007. “Habitat Structure and the Evolution of Bird Song: A Meta-analysis of the Evidence for the Acoustic Adaptation Hypothesis.” Functional Ecology 21: 134-142.

[6]

Bosch, J., and I. De la Riva. 2004. “Are Frog Calls Modulated by the Environment? An Analysis With Anuran Species From Bolivia.” Canadian Journal of Zoology 82: 880-888.

[7]

Brunner, R. M., and J. M. Guayasamin. 2020. “Nocturnal Visual Displays and Call Description of the Cascade Specialist Glassfrog Sachatamia orejuela.” Behaviour 157: 1257-1268.

[8]

Caminer, M. A., and S. R. Ron. 2020. “Systematics of the Boana Semilineata Species Group (Anura: Hylidae), With a Description of Two New Species From Amazonian Ecuador.” Zoological Journal of the Linnean Society 190: 149-180.

[9]

Caramaschi, U., and C. A. G. Cruz. 1999. “Duas Espécies Novas do Grupo de Hyla polytaenia Cope, 1870 do Estado de Minas Gerais, Brasil.” Boletim Do Museu Nacional, Nova Série, Zoologia 403: 1-10.

[10]

Centeno, F. C., A. Vivancos, and D. V. Andrade. 2021. “Reproductive Biology and Sexual Dimorphism in Bokermannohyla alvarengai (Anura: Hylidae).” Herpetologica 77: 14-23.

[11]

daRosa, M. V., M. Ferrão, P. Pequeno, et al. 2023. “How Do Tree Density and Body Size Influence Acoustic Signals in Amazonian Nurse Frogs?” Bioacoustics 32: 491-505.

[12]

De Mello Bezerra, A., S. P. de Carvalho-e-Silva, and L. P. Gonzaga. 2021. “Evolution of Acoustic Signals in Neotropical Leaf Frogs.” Animal Behaviour 181: 41-49.

[13]

Dubois, A., and J. Martens. 1984. “A Case of Possible Vocal Convergence Between Frogs and a Bird in Himalayan Torrents.” Journal Für Ornithologie 125: 455-463.

[14]

Dubois, A., A. Ohler, and R. A. Pyron. 2021. “New Concepts and Methods for Phylogenetic Taxonomy and Nomenclature in Zoology Exemplified by a New Ranked Cladonomy of Recent Amphibians (Lissamphibia).” Megataxa 5: 1-738.

[15]

Duellman, W. E.2001. The Hylid Frogs of Middle America. Lawrence, KA: Kansas University.

[16]

Duellman, W. E., A. B. Marion, and S. B. Hedges. 2016. “Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae).” Zootaxa 4104: 1-109.

[17]

Duellman, W. E., and L. Trueb. 1994. Biology of Amphibians. Baltimore, MD: Johns Hopkins University.

[18]

Erdtmann, L., and A. Amézquita. 2009. “Differential Evolution of Advertisement Call Traits in Dart-Poison Frogs (Anura: Dendrobatidae).” Ethology 115: 801-811.

[19]

Erdtmann, L. K., and A. P. Lima. 2013. “Environmental Effects on Anuran Call Design: What We Know and What We Need to Know.” Etholology, Ecology & Evolution 25: 1-11.

[20]

Escalona, M., S. Castroviejo-Fisher, and P. I. Simões. 2023. “Frog Call Transmission in Forestry Monocultures: Are There Drawbacks?” Biotropica 55: 1006-1018.

[21]

Escalona, M., P. I. Simões, A. González-Voyer, et al. 2019. “Neotropical Frogs and Mating Songs: The Evolution of Advertisement Calls in Glassfrogs.” Journal of Evolutionary Biology 32: 163-176.

[22]

Ey, E., and J. Fischer. 2009. “The “Acoustic Adaptation Hypothesis”—A Review of the Evidence From Birds, Anurans and Mammals.” Bioacoustics 19: 21-48.

[23]

Faivovich, J., C. F. Haddad, P. C. Garcia, et al. 2005. “Systematic Review of the Frog family Hylidae, With Special Reference to Hylinae: Phylogenetic Analysis and Taxonomic Revision.” Bulletin of the American Museum of Natural History 294: 1-240.

[24]

Faivovich, J., R. W. McDiarmid, and C. W. Myers. 2013. “Two New Species of Myersiohyla (Anura: Hylidae) From Cerro de la Neblina Venezuela With Comments on Other Species of the Genus.” American Museum Novitates 3792: 1-63.

[25]

Faivovich, J., P. D. P. Pinheiro, M. L. Lyra, et al. 2021. “Phylogenetic Relationships of the Boana pulchella Group (Anura: Hylidae).” Molecular Phylogenetics and Evolution 155: 106981.

[26]

Feng, A. S., P. M. Narins, C. H. Xu, et al. 2006. “Ultrasonic Communication in Frogs.” Nature 440: 333-336.

[27]

Fitch, W. T.1997. “Vocal Tract Length and Formant Frequency Dispersion Correlate With Body Size in Rhesus Macaques.” The Journal of the Acoustical Society of America 102: 1213-1222.

[28]

Forrest, T. G.1994. “From Sender to Receiver: Propagation and Environmental Effects on Acoustic Signals.” American Zoologist 34: 644-654.

[29]

Fouquet, A., P. Marinho, A. Réjaud, et al. 2021. “Systematics and Biogeography of the Boana albopunctata Species Group (Anura, Hylidae), With the Description of Two New Species From Amazonia.” Systematics and Biodiversity 19: 375-399.

[30]

Freckleton, R. P.2009. “The Seven Deadly Sins of Comparative Analysis.” Journal of Evolutionary Biology 22: 1367-1375.

[31]

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. “Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence.” American Naturalist 160: 712-726.

[32]

Freitas, B., P. B. D'Amelio, B. Milá, et al. 2024. “The Acoustic Adaptation Hypothesis Across Terrestrial Vertebrates: A Meta-analysis.” BioRxiv22024.02.21.581368.

[33]

Frost, D. R 2023. “ Amphibian Species of the World: An Online Reference Version 6.2.” Accessed September 13, 2023. https://amphibiansoftheworld.amnh.org/index.php.

[34]

Gao, X., A. R. Huete, W. Ni, et al. 2000. “Optical-Biophysical Relationships of Vegetation Spectra Without Background Contamination.” Remote Sensing of Environment 74: 609-620.

[35]

Gillard, G. L., and J. J. L. Rowley. 2023. “Assessment of the Acoustic Adaptation Hypothesis in Frogs Using Large-Scale Citizen Science Data.” Journal of Zoology 320: 271-281.

[36]

Gingras, B., M. Boeckle, C. T. Herbst, et al. 2013. “Call Acoustics Reflect Body Size Across Four Clades of Anurans.” Journal of Zoology 289: 143-150.

[37]

Gould, S. J.1980. “The Evolutionary Biology of Constraint.” Daedalus 109: 39-52.

[38]

Goutte, S., A. Dubois, S. D. Howard, et al. 2016. “Environmental Constraints and Call Evolution in Torrent-Dwelling Frogs.” Evolution; International Journal of Organic Evolution 70: 811-826.

[39]

Goutte, S., A. Dubois, S. D. Howard, et al. 2018. “How the Environment Shapes Animal Signals: A Test of the Acoustic Adaptation Hypothesis in Frogs.” Journal of Evolutionary Biology 31: 148-158.

[40]

Goutte, S., A. Dubois, and F. Legendre. 2013. “The Importance of Ambient Sound Level to Characterise Anuran Habitat.” PLoS ONE 8: e78020.

[41]

Grafen, A.1989. “The Phylogenetic Regression.” Philosophical Transactions of the Royal Society of London B: Biological Sciences 326: 119-157.

[42]

Hardt, B., and L. Benedict. 2021. “Can You Hear Me Now? A Review of Signal Transmission and Experimental Evidence for the Acoustic Adaptation Hypothesis.” Bioacoustics 30: 716-742.

[43]

Hijmans, R. J., J. Van Etten, J. Cheng, et al. 2015. “Package ‘Raster’.” R Package 734: 473.

[44]

Howard, R. D., and J. R. Young. 1998. “Individual Variation in Male Vocal Traits and Female Mating Preferences in Bufo americanus.” Animal Behaviour 55: 1165-1179.

[45]

Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003. “Stochastic Mapping of Morphological Characters.” Systematic Biology 52: 131-138.

[46]

Huete, A., K. Didan, T. Miura, et al. 2002. “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices.” Remote Sensing of Environment 83: 195-213.

[47]

Jetz, W., and R. A. Pyron. 2018. “The Interplay of Past Diversification and Evolutionary Isolation With Present Imperilment Across the Amphibian Tree of Life.” Nature Ecology & Evolution 2: 850-858.

[48]

K. Lisa Yang Center for Conservation Bioacoustics. 2014. “ Raven Pro: Interactive Sound Analysis Software (Version 1.5).” Computer software. Ithaca, NY: The Cornell Lab of Ornithology. https://ravensoundsoftware.com/.

[49]

Kime, N. M., W. R. Turner, and M. J. Ryan. 2000. “The Transmission of Advertisement Calls in Central American Frogs.” Behavioral Ecology 11: 71-83.

[50]

Köhler, J., M. Jansen, A. Rodríguez, et al. 2017. “The Use of Bioacoustics in Anuran Taxonomy: Theory, Terminology, Methods and Recommendations for Best Practice.” Zootaxa 4251, 1-124.

[51]

Liu, H. Q., and A. Huete. 1995. “A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise.” IEEE Transactions on Geoscience and Remote Sensing 33: 457-465.

[52]

Lyra, M. L., A. C. C. Lourenço, P. D. Pinheiro, et al. 2020. “High-throughput DNA Sequencing of Museum Specimens Sheds Light on the Long-Missing Species of the Bokermannohyla claresignata Group (Anura: Hylidae: Cophomantini).” Zoological Journal of the Linnean Society 190: 1235-1255.

[53]

Marten, K., and P. Marler. 1977a. “Sound Transmission and Its Significance for Animal Vocalization: I. Temperate Habitats.” Behavioral Ecology and Sociobiology 2: 271-290.

[54]

Marten, K., and P. Marler. 1977b. “Sound Transmission and Its Significance for Animal Vocalization: II. Tropical Forest Habitats.” Behavioral Ecology and Sociobiology 2: 291-302.

[55]

Martin, W. F.1971. “Mechanics of Sound Production in Toads of the Genus Bufo: Passive Elements.” Journal of Experimental Zoology 176: 273-293.

[56]

Martins, E. P., and T. F Hansen. 1997. “Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information Into the Analysis of Interspecific Data.” American Naturalist 149: 646-667.

[57]

Masek, J. G., E. F. Vermote, N. Saleous, et al. 2006. “A Landsat Surface Reflectance Data Set for North America, 1990-100.” IEEE Geoscience and Remote Sensing Letters 3: 68-72.

[58]

Mattiuzzi, M., J. Verbesselt, F. Stevens, et al. 2014. “ MODIS: MODIS Acquisition and Processing package.” R package version 0.10-18. http://R-Forge.R-project.org/projects/modis.

[59]

Maynard Smith, J., and D. G. C. Harper. 1995. “Animal Signals: Models and Terminology.” Journal of Theoretical Biology 177: 305-311.

[60]

Maynard Smith, J., and D. G. C. Harper. 2003. Animal Signals. Oxford Series in Ecology and Evolution. New York: Oxford University Press.

[61]

Medina-García, A., M. Araya-Salas, and T. F. Wright. 2015. “Does Vocal Learning Accelerate Acoustic Diversification? Evolution of Contact Calls in Neotropical Parrots.” Journal of Evolutionary Biology 28: 1782-1792.

[62]

Mendoza-Henao, A. M., K. R. Zamudio, J. M. Guayasamin, et al. 2023. “Environment Rather Than Character Displacement Explains Call Evolution in Glassfrogs.” Evolution; International Journal of Organic Evolution 77: 355-369.

[63]

Morton, E. S1975. “Ecological Sources of Selection on Avian Sounds.” American Naturalist 109: 17-34.

[64]

Muñoz, M., and W. Halfwerk. 2022. “Amplification of Frog Calls by Reflective Leaf Substrates: Implications for Terrestrial and Arboreal Species.” Bioacoustics 31: 490-503.

[65]

Muñoz, M. I., S. Goutte, J. Ellers, et al. 2020. “Environmental and Morphological Constraints Interact to Drive the Evolution of Communication Signals in Frogs.” Journal of Evolutionary Biology 33: 1749-1757.

[66]

Nakamura, D., M. Escalona, and P. D. P. Pinheiro. 2024. “Body Size, Habitat, and Sexual Selection Affect Call Evolution in Cophomantini Treefrogs (Anura: Hylidae: Hylinae).” Biological Journal of the Linnean Society, blae036. https://doi.org/10.1093/biolinnean/blae036.

[67]

Nali, R. C., K. R. Zamudio, and C. P. Prado. 2023. “Phenotypic Differentiation in Populations of a Gladiator Tree Frog: Environment, Genetic Drift and Sexual Selection.” Biological Journal of the Linnean Society 139: 243-256.

[68]

Orme, D., R. Freckleton, G. Thomas, et al. 2013. “ CAPER: Comparative Analyses of Phylogenetics and Evolution in R.” R package version 0.5.2. https://CRAN.R-project.org/package=caper.

[69]

Paradis, E., J. Claude, and K. Strimmer. 2004. “APE: Analyses of Phylogenetics and Evolution in R Language.” Bioinformatics 20: 289-290.

[70]

Penna, M., R. Márquez, J. Bosch, et al. 2006. “Nonoptimal Propagation of Advertisement Calls of Midwife Toads in Iberian Habitats.” The Journal of the Acoustical Society of America 119: 1227-1237.

[71]

Piercy, J. E., T. F. Embleton, and L. C. Sutherland. 1977. “Review of Noise Propagation in the Atmosphere.” The Journal of the Acoustical Society of America 61: 1403-1418.

[72]

Pinheiro, P. D. P., P. J. R. Kok, B. P. Noonan, et al. 2019. “A New Genus of Cophomantini With Comments on the Taxonomic Status of Boana liliae (Anura Hylidae).” Zoological Journal of the Linnean Society 185: 226-245.

[73]

Podos, J2001. “Correlated Evolution of Morphology and Vocal Signal Structure in Darwin's Finches.” Nature 409: 185-188.

[74]

Preininger, D., M. Bockle, and W. Hodl. 2007. “Comparison of Anuran Acoustic Communities of Two Habitat Types in the Danum Valley Conservation Area, Sabah, Malaysia.” Salamandra 43: 129-138.

[75]

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

[76]

Revell, L. J.2009. “Size-Correction and Principal Components for Interspecific Comparative Studies.” Evolution: International Journal of Organic Evolution 63: 3258-3268.

[77]

Revell, L. J.2010. “Phylogenetic Signal and Linear Regression on Species Data.” Methods in Ecology and Evolution 1: 319-329.

[78]

Revell, L. J.2012. “Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things).” Methods in Ecology and Evolution 3: 217-223.

[79]

Revell, L. J.2013. “Two New Graphical Methods for Mapping Trait Evolution on Phylogenies.” Methods in Ecology and Evolution 4: 754-759.

[80]

Röhr, D. L., G. B. Paterno, F. Camurugi, et al. 2016. “Background Noise as a Selective Pressure: Stream-Breeding Anurans Call at Higher Frequencies.” Organisms, Diversity and Evolution 16: 269-273.

[81]

Ryan, M.1988. “ Constraints and Patterns in the Evolution of Anuran Acoustic Communication.” In The Evolution of the Amphibian Auditory System, edited by B. Fritzsch, M. J. Ryan, W. Wilczynski T. E. Hetherington, and W. Walkowiak, 637-677. New York: Wiley.

[82]

Ryan, M. J.1980. “Female Mate Choice in a Neotropical Frog.” Science 209: 523-525.

[83]

Ryan, M. J., and E. A. Brenowitz. 1985. “The Role of Body Size, Phylogeny, and Ambient Noise in the Evolution of Bird Song.” The American Naturalist 12: 87-100.

[84]

Ryan, M. J., R. B. Cocroft, and W. Wilczynski. 1990. “The Role of Environmental Selection in Intraspecific Divergence of Mate Recognition Signals in the Cricket Frog.” Acris Crepitans. Evolution 44: 186-1872.

[85]

Ryan, M. J., and N. M. Kime. 2003. “ Selection on Long-Distance Acoustic Signals.” In Acoustic Communication, edited by A. Simmons and F. Richard, 225-274. New York: Springer.

[86]

Ryan, M. J., M. D. Tuttle, and A. S. Rand. 1982. “Sexual Advertisement and Bat Predation in a Neotropical Frog.” The American Naturalist 119: 136-139.

[87]

Schwartz, J. J., R. Hunce, B. Lentine, et al. 2016. “Calling Site Choice and Its Impact on Call Degradation and Call Attractiveness in the Gray Treefrog, Hyla versicolor.” Behavioral Ecology and Sociobiology 70: 1-19.

[88]

Smith, J. M., R. Burian, S. Kauffman, et al. 1985. “Developmental Constraints and Evolution: A Perspective From the Mountain Lake Conference on Development and Evolution.” The Quarterly Review of Biology 60: 265-287.

[89]

Stearns, S. C.1986. “ Natural Selection and Fitness, Adaptation and constraint.” In Patterns and Processes in the History of Life, edited by D. M. Raup and D. Jablonsky, 23-44. Berlin, Germany: Springer.

[90]

Sturaro, M. J., J. C. L. Costa, A. O. Maciel, et al. 2020. “Resolving the Taxonomic Puzzle of Boana cinerascens (Spix, 1824), With Resurrection of Hyla granosa gracilis Melin, 1941 (Anura: Hylidae).” Zootaxa 4750: 1-30.

[91]

Sueur, J., T. Aubin, and C Simonis. 2008. “Seewave, a Free Modular Tool for Sound Analysis and Synthesis.” Bioacoustics 18: 213-226.

[92]

Sugai, L. S. M., D. Llusia, T. Siqueira, et al. 2021. “Revisiting the Drivers of Acoustic Similarities in Tropical Anuran Assemblages.” Ecology 102: e03380.

[93]

Tonini, J. F. R., D. B. Provete, N. M. Maciel, et al. 2020. “Allometric Escape From Acoustic Constraints Is Rare for Frog Calls.” Ecology and Evolution 10: 3686-3695.

[94]

Velásquez, N. A., F. N. Moreno-Gómez, E. Brunetti, et al. 2018. “The Acoustic Adaptation Hypothesis in a Widely Distributed South American Frog: Southernmost Signals Propagate Better.” Scientific Reports 8: 6990.

[95]

Vences, M., and D. Wake. 2007. “ Speciation, Species Boundaries and Phylogeography of Amphibians.” In Amphibian Biology, Vol. 7, edited by H. Heatwole and M Tyler, 2613-2671. Chipping Norton, Australia: Surrey Beatty and Sons.

[96]

Weir, J. T., D. J. Wheatcroft, and T. D. Price. 2012. “The Role of Ecological Constraint in Driving the Evolution of Avian Song Frequency Across a Latitudinal Gradient.” Evolution; International Journal of Organic Evolution 66: 2773-2783.

[97]

Wells, K. D.2007. The Ecology and Behavior of Amphibians. Chicago, IL: University of Chicago Press.

[98]

Wells, K. D., and J. J. Schwartz. 1982. “The Effect of Vegetation on the Propagation of Calls in the Neotropical Frog Centrolenella fleischmanni.” Herpetologica 1982: 449-455.

[99]

Wiens, J. J., J. W. Fetzner, C. L. Parkinson , et al. 2005. “Hylid Frog Phylogeny and Sampling Strategies for Speciose Clades.” Systematic Biology 54: 778-807.

[100]

Wiens, J. J., C. H. Graham, D. S. Moen, et al. 2006. “Evolutionary and Ecological Causes of the Latitudinal Diversity Gradient in Hylid Frogs: Treefrog Trees Unearth the Roots of High Tropical Diversity.” The American Naturalist 168: 579-596.

[101]

Wiens, J. J., C. A. Kuczynski, X. Hua, et al. 2010. “An Expanded Phylogeny of Treefrogs (Hylidae) Based on Nuclear and Mitochondrial Sequence Data.” Molecular Phylogenetics and Evolution 55: 871-882.

[102]

Wilkins, M. R., N. Seddon, and R. J. Safran. 2013. “Evolutionary Divergence in Acoustic Signals: Causes and Consequences.” Trends in Ecology and Evolution 28: 156-166.

[103]

Zhao, L., J. C. Santos, J. Wang, et al. 2021. “Noise Constrains the Evolution of Call Frequency Contours in Flowing Water Frogs: A Comparative Analysis in Two Clades.” Frontiers in Zoology 18: 37.

[104]

Zweifel, R. G.1968. “Effects of Temperature, Body Size, and Hybridization on Mating Calls of Toads, Bufo a. americanus and Bufo woodhousii Fowleri.” Copeia 1968: 269-285.

RIGHTS & PERMISSIONS

2024 The Author(s). Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/