Microhabitat and adhesive toepads shape gecko limb morphology

Anna ZIMIN , Sean V. ZIMIN , L. Lee GRISMER , Aaron M. BAUER , David G. CHAPPLE , Jacob DEMBITZER , Uri ROLL , Shai MEIRI

Integrative Zoology ›› 2025, Vol. 20 ›› Issue (3) : 634 -650.

PDF
Integrative Zoology ›› 2025, Vol. 20 ›› Issue (3) : 634 -650. DOI: 10.1111/1749-4877.12880
ORIGINAL ARTICLE

Microhabitat and adhesive toepads shape gecko limb morphology

Author information +
History +
PDF

Abstract

Different substrates pose varied biomechanical challenges that select specific morphologies, such as long limbs for faster running and short limbs for balanced posture while climbing narrow substrates. We tested how gecko locomotion is affected by the microhabitat they occupy and by a key adaptation—adhesive toepads—through analyzing how those are related to limb morphology. We collected microhabitat and toepads data for over 90% of limbed gecko species, and limb measurements for 403 species from 83 of the 121 limbed gecko genera, which we then used in phylogenetic comparative analyses. Our data highlight the association of adhesive toepads with arboreality, but a phylogenetic analysis shows that this relationship is not significant, suggesting that these traits are phylogenetically constrained. Comparative analyses reveal that pad-bearing species possess shorter hindlimbs and feet, more even limb lengths, and lower crus: thigh ratios, than padless geckos, across microhabitats. Saxicolous geckos have the longest limbs and limb segments. This is probably influenced by selection for long strides, increased takeoff velocity, and static stability on inclined surfaces. Terrestrial geckos have more even hind- and forelimbs than arboreal geckos, unlike patterns found in other lizards. Our findings underline the difficulty to infer on microhabitat–morphology relationships from one taxon to another, given their differing ecologies and evolutionary pathways. We emphasize the importance of key innovation traits, such as adhesive toepads, in shaping limb morphology in geckos and, accordingly, their locomotion within their immediate environment.

Keywords

ancestral state reconstruction / locomotion / macroecology / phylogenetic comparative analysis / reptiles

Cite this article

Download citation ▾
Anna ZIMIN, Sean V. ZIMIN, L. Lee GRISMER, Aaron M. BAUER, David G. CHAPPLE, Jacob DEMBITZER, Uri ROLL, Shai MEIRI. Microhabitat and adhesive toepads shape gecko limb morphology. Integrative Zoology, 2025, 20(3): 634-650 DOI:10.1111/1749-4877.12880

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold EN (1998). Structural niche, limb morphology and locomotion in lacertid lizards (Squamata: Lacertidae), a preliminary survey. Bulletin of the Natural History Museum Zoology Series 64, 63-89.

[2]

Autumn K, Jindrich D, DeNardo D, Mueller R (1999). Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53, 580-599.

[3]

Bauer AM (1998). Morphology of the adhesive tail tips of carphodactyline geckos (Reptilia: Diplodactylidae). Journal of Morphology 235, 41-58.

[4]

Bauer AM, Russell AP (1991). Pedal specialisations in dune-dwelling geckos. Journal of Arid Environments 20, 43-62.

[5]

Bauer AM, Russell AP, Powell GL (1996). The evolution of locomotor morphology in Rhoptropus (Squamata: Gekkonidae): Functional and phylogenetic considerations. African Journal of Herpetology 45, 8-30.

[6]

Beaulieu JM, O'Meara BC, Donoghue MJ (2013). Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Systematic Biology 62, 725-737.

[7]

Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57, 289-300.

[8]

Beuttell K, Losos JB (1999). Ecological morphology of Caribbean anoles. Herpetological Monographs 13, 1-28.

[9]

Bloch N, Irschick DJ (2005). Toe-clipping dramatically reduces clinging performance in a pad-bearing lizard (Anolis carolinensis). Journal of Herpetology 39, 288-293.

[10]

Briggs VS (2012). Agonistic behavior of the Mediterranean gecko Hemidactylus turcicus. Zoological Studies 51, 956-965.

[11]

Brown RM, Supriatna J, Ota H (2000). Discovery of a new species of Luperosaurus (Squamata; Gekkonidae) from Sulawesi, with a phylogenetic analysis of the genus, and comments on the status of Luperosaurus serraticaudus. Copeia 2000, 191-209.

[12]

Campo AL-D, García-Roa R (2014). Predation behavior with individuals aggregation on streetlights in Tarentola mauritanica (Squamata: Gekkonidae) from Southern Spain. Biharean Biologist 8, 120-121.

[13]

Cartmill M (1985). Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, eds. Functional Vertebrate Morphology. Harvard University Press, Cambridge, MA, pp. 73-88.

[14]

Clemente CJ, Withers PC, Thompson G, Lloyd D (2008). Why go bipedal? Locomotion and morphology in Australian agamid lizards. Journal of Experimental Biology 211, 2058-2065.

[15]

Crandell KE, Herrel A, Sasa M, Losos JB, Autumn K (2014). Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363-369.

[16]

da Silva JM, Tolley KA (2013). Ecomorphological variation and sexual dimorphism in a recent radiation of dwarf chameleons (Bradypodion): Morphological variation in dwarf chameleons. Biological Journal of the Linnean Society 109, 113-130.

[17]

Elstrott J, Irschick DJ (2004). Evolutionary correlations among morphology, habitat use and clinging performance in Caribbean Anolis lizards. Biological Journal of the Linnean Society 83, 389-398.

[18]

Emerson SB (1985). Jumping and leaping. In Hildebrand M, Bramble DM, Liem KF, Wake DB, eds. Functional Vertebrate Morphology. Harvard University Press, Cambridge, MA, pp. 58-72.

[19]

Foster KL, Garland T , Schmitz L, Higham TE (2018). Skink ecomorphology: Forelimb and hind limb lengths, but not static stability, correlate with habitat use and demonstrate multiple solutions. Biological Journal of the Linnean Society 125, 673-692.

[20]

Fuss FK, Niegl G (2012). The importance of friction between hand and hold in rock climbing. Sports Technology 5, 90-99.

[21]

Gamble T, Greenbaum E, Jackman TR, Bauer AM (2015). Into the light: Diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society 115, 896-910.

[22]

Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, e39429.

[23]

Gaulke M, Roesler H, Brown RM (2007). A new species of Luperosaurus (Squamata: Gekkonidae) from Panay island, Philippines, with comments on the taxonomic status of Luperosaurus cumingii (Gray, 1845). Copeia 2007, 413-425.

[24]

Glazier DS (2022). Complications with body-size correction in comparative biology: Possible solutions and an appeal for new approaches. Journal of Experimental Biology 225, jeb243313.

[25]

Goodman BA (2007). Divergent morphologies, performance, and escape behaviour in two tropical rock-using lizards (Reptilia: Scincidae). Biological Journal of the Linnean Society 91, 85-98.

[26]

Goodman BA, Miles DB, Schwarzkopf L (2008). Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology 89, 3462-3471.

[27]

Griffing AH, Sanger TJ, Epperlein L et al. (2021). And thereby hangs a tail: Morphology, developmental patterns and biomechanics of the adhesive tails of crested geckos (Correlophus ciliatus). Proceedings of the Royal Society B: Biological Sciences 288, 20210650.

[28]

Grismer LL (2021). Comparative ecomorphology of the sandstone night lizard (Xantusia gracilis) and the granite night lizard (Xantusia henshawi). Vertebrate Zoology 71, 425-437.

[29]

Grismer LL, Grismer JL (2017). A re-evaluation of the phylogenetic relationships of the Cyrtodactylus condorensis group (Squamata; Gekkonidae) and a suggested protocol for the characterization of rock-dwelling ecomorphology in Cyrtodactylus. Zootaxa 4300, 486-504.

[30]

Grismer LL, Wood PL , Le MD, Quah ES, Grismer JL (2020). Evolution of habitat preference in 243 species of bent-toed geckos (Genus Cyrtodactylus Gray, 1827) with a discussion of karst habitat conservation. Ecology and Evolution 10, 13717-13730.

[31]

Grismer LL, Wood PL , Poyarkov NA et al. (2021). Karstic landscapes are foci of species diversity in the world's third-largest vertebrate genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae). Diversity 13, 183.

[32]

Guillerme T (2018). dispRity: A modular R package for measuring disparity. Methods in Ecology and Evolution 9, 1755-1763.

[33]

Hagey TJ, Harte S, Vickers M, Harmon LJ, Schwarzkopf L (2017a). There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads. PLoS ONE 12, e0184641.

[34]

Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ (2017b). Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 71, 2344-2358.

[35]

Herrel A, Meyers JJ, Vanhooydonck B (2001). Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): A population-level analysis. Biological Journal of the Linnean Society 74, 305-314.

[36]

Herrel A, Meyers JJ, Vanhooydonck B (2002). Relations between microhabitat use and limb shape in phrynosomatid lizards. Biological Journal of the Linnean Society 77, 149-163.

[37]

Higham TE, Birn-Jeffery AV, Collins CE, Hulsey CD, Russell AP (2015). Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion. PNAS 112, 809-814.

[38]

Higham TE, Schmitz L (2019). A hierarchical view of gecko locomotion: Photic environment, physiological optics, and locomotor performance. Integrative and Comparative Biology 59, 443-455.

[39]

Hildebrand M, Bramble DM, Liem KF, Wake DB, eds (1985). Functional Vertebrate Morphology. Harvard University Press, Cambridge, MA.

[40]

Huey RB, Pianka ER (1977). Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58, 1066-1075.

[41]

Irschick DJ, Garland T (2001). Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367-396.

[42]

Irschick DJ, Higham TE (2016). Animal Athletes: An Ecological and Evolutionary Approach. Oxford University Press, Oxford, UK.

[43]

Irschick DJ, Jayne BC (1998). Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. Journal of Experimental Biology 201, 273-287.

[44]

Irschick DJ, Jayne BC (1999). Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. Journal of Experimental Biology 202, 1047-1065.

[45]

Johnson MK, Russell AP, Bauer AM (2005). Locomotor morphometry of the Pachydactylus radiation of lizards (Gekkota: Gekkonidae): A phylogenetically and ecologically informed analysis. Canadian Journal of Zoology 83, 1511-1524.

[46]

Kaatz A, Grismer JL, Grismer LL (2021). Convergent evolution of karst habitat preference and its ecomorphological correlation in three species of bent-toed geckos (Cyrtodactylus) from Peninsular Malaysia. Vertebrate Zoology 71, 367-386.

[47]

Khannoon ER, Endlein T, Russell AP, Autumn K (2014). Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications. Proceedings of the Royal Society B: Biological Sciences 281, 20132334.

[48]

Kilbourne BM, Hoffman LC (2015). Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures. Evolution 69, 1546-1559.

[49]

Kolbe JJ, Losos JB (2005). Hind-limb length plasticity in Anolis carolinensis. Journal of Herpetology 39, 674-678.

[50]

Kubo T, Sakamoto M, Meade A, Venditti C (2019). Transitions between foot postures are associated with elevated rates of body size evolution in mammals. PNAS 116, 2618-2623.

[51]

Kulyomina Y, Moen DS, Irschick DJ (2019). The relationship between habitat use and body shape in geckos. Journal of Morphology 280, 722-730.

[52]

Lajmi A, Verma A, Karanth KP (2020). Repeated evolution of terrestrial lineages in a continental lizard radiation. Journal of Evolutionary Biology 33, 57-66.

[53]

Lamb T, Bauer AM (2006). Footprints in the sand: Independent reduction of subdigital lamellae in the Namib-Kalahari burrowing geckos. Proceedings of the Royal Society B: Biological Sciences 273, 855-864.

[54]

Lima SL, Dill LM (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology 68, 619-640.

[55]

Losos JB (1990a). Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: An evolutionary analysis. Ecological Monographs 60, 369-388.

[56]

Losos JB (1990b). The evolution of form and function: Morphology and locomotor performance in West Indian Anolis lizards. Evolution 44, 1189-1203.

[57]

Losos JB (2009). Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of anoles. University of California Press, Los Angeles, CA.

[58]

Lull RS (1904). Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. IV. Cursorial adaptations. The American Naturalist 38, 1-11.

[59]

Meiri S (2019). What geckos are—An ecological-biogeographic perspective. Israel Journal of Ecology and Evolution 66, 253-263.

[60]

Meiri S (2024). SquamBase—A database of squamate (Reptilia: Squamata) traits. Global Ecology and Biogeography 33, geb.13812.

[61]

Melville J, Swain R (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biological Journal of the Linnean Society 70, 667-683.

[62]

Miller AH, Stroud JT (2022). Novel tests of the key innovation hypothesis: Adhesive toepads in arboreal lizards. Systematic Biology 71, 139-152.

[63]

Mosauer W (1935). The reptiles of a sand dune area and its surroundings in the Colorado Desert, California: A study in habitat preference. Ecology 16, 13-27.

[64]

Naylor ER, Higham TE (2019). Attachment beyond the adhesive system: The contribution of claws to gecko clinging and locomotion. Integrative and Comparative Biology 59, 168-181.

[65]

Nazarov R, Melnikov D, Melnikova E (2013). Three new species of Ptyodactylus (Reptilia; Squamata; Phyllodactylidae) from the Middle East. Russian Journal of Herpetology 20, 147-162.

[66]

Nordberg EJ, Schwarzkopf L (2022). Afraid of the dark? The influence of natural and artificial light at night on the behavioral activity of a nocturnal gecko. Frontiers in Ecology and Evolution 10, 821335.

[67]

Norris J, Tingley R, Meiri S, Chapple DG (2021). Environmental correlates of morphological diversity in Australian geckos. Global Ecology and Biogeography 30, 1086-1100.

[68]

Olberding JP, Herrel A, Higham TE, Garland T (2016). Limb segment contributions to the evolution of hind limb length in phrynosomatid lizards. Biological Journal of the Linnean Society 117, 775-795.

[69]

Orme D (2018). The caper package: comparative analysis of phylogenetics and evolution in R. Available from URL: https://cran.r-project.org/package=caper

[70]

Peattie AM (2008). Subdigital setae of narrow-toed geckos, including a eublepharid (Aeluroscalabotes felinus). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 291, 869-875.

[71]

Petren K, Bolger DT, Case TJ (1993). Mechanisms in the competitive success of an invading sexual gecko over an asexual native. Science 259, 354-358.

[72]

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from URL: https://www.r-project.org/

[73]

Rabosky DL (2015). No substitute for real data: A cautionary note on the use of phylogenies from birth-death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207-3216.

[74]

Revell LJ (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217-223.

[75]

Revell LJ, Johnson MA, II Schulte JA, Kolbe JJ, Losos JB (2007). A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 61, 2898-2912.

[76]

Riedel J, Grismer LL, Higham T et al. (2024). Ecomorphology of the locomotor apparatus in the genus Cyrtodactylus (Gekkota, Squamata). Evolutionary Biology 51, 106-123.

[77]

Riedel J, Nordberg E, Schwarzkopf L (2020). Ecological niche and microhabitat use of Australian geckos. Israel Journal of Ecology and Evolution 66, 209-222.

[78]

Riedel J, Zozaya SM, Hoskin CJ, Schwarzkopf L (2021). Parallel evolution of toepads in rock-dwelling lineages of a terrestrial gecko (Gekkota: Gekkonidae: Heteronotia binoei). Zoological Journal of the Linnean Society 193, 636-654.

[79]

Röll B (2000). Gecko vision—Visual cells, evolution, and ecological constraints‏. Journal of Neurocytology 29, 471-484.

[80]

Russell AP (1975). A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). Journal of Zoology 176, 437-476.

[81]

Russell AP (1979). Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979, 1-21.

[82]

Russell AP (2002). Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Integrative and Comparative Biology 42, 1154-1163.

[83]

Russell AP, Gamble T (2019). Evolution of the Gekkotan adhesive system: Does digit anatomy point to one or more origins? Integrative and Comparative Biology 59, 131-147.

[84]

Russell AP, Higham TE (2009). A new angle on clinging in geckos: Incline, not substrate, triggers the deployment of the adhesive system. Proceedings of the Royal Society B: Biological Sciences 276, 3705-3709.

[85]

Schwarz R, Stark G, Antonopolous A et al. (2021). Specialist versus generalist at the intraspecific level: Functional morphology and substrate preference of Mediodactylus kotschyi geckos. Integrative and Comparative Biology 61, 62-75.

[86]

Sinervo B, Losos JB (1991). Walking the tight rope: Arboreal sprint performance among Sceloporus Occidentalis lizard populations. Ecology 72, 1225-1233.

[87]

Slavenko A, Dror L, Camaiti M et al. (2022). Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world's second-largest family of terrestrial vertebrates. Evolution 76, 1195-1208.

[88]

Snyder RC (1949). Bipedal locomotion of the lizard Basiliscus basiliscus. Copeia 1949, 129.

[89]

Snyder RC (1954). The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. American Journal of Anatomy 95, 1-45.

[90]

Spezzano LC, Jayne BC (2004). The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei). Journal of Experimental Biology 207, 2115-2131.

[91]

Spinner M, Westhoff G, Gorb SN (2014). Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness. Scientific Reports 4, 5481.

[92]

Stevenson RD (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. The American Naturalist 126, 362-386.

[93]

Taylor C, Shkolnik A, Dmi'el R, Baharav D, Borut A (1974). Running in cheetahs, gazelles, and goats: Energy cost and limb configuration. American Journal of Physiology-Legacy Content 227, 848-850.

[94]

Title PO, Singhal S, Grundler MC et al. (2024). The macroevolutionary singularity of snakes. Science 383, 918-923.

[95]

Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA (2016). Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation 204, 23-31.

[96]

Toro E, Herrel A, Irschick D (2004). The evolution of jumping performance in Caribbean Anolis lizards: Solutions to biomechanical trade-offs. The American Naturalist 163, 844-856.

[97]

Uetz P, Freed P, Aguilar R, Reyes F, Kudera J, Hošek J, eds (2023). The Reptile Database. Available from URL: http://www.reptile-database.org/

[98]

Van Damme R, Aerts P, Vanhooydonck B (1997). No trade-off between sprinting and climbing in two populations of the Lizard Podarcis hispanica (Reptilia: Lacertidae). Biological Journal of the Linnean Society 60, 493-503.

[99]

Vanhooydonck B, Van Damme R (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evolutionary Ecology Research 1, 785-803.

[100]

Vanhooydonck B, Van Damme R (2001). Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? Journal of Evolutionary Biology 14, 46-54.

[101]

Vitt LJ, Caldwell JP, Zani PA, Titus TA (1997). The role of habitat shift in the evolution of lizard morphology: Evidence from tropical Tropidurus. PNAS 94, 3828-3832.

[102]

Werner YL, Broza M (1969). Hypothetical function of elevated locomotory postures in geckos (Reptilia: Gekkonidae). Israel Journal of Ecology and Evolution 18, 349-355.

[103]

Williams EE (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. In: Huey RB, Pianka ER, Schoener TW, eds. Lizard Ecology. Harvard University Press, Cambridge, MA, pp. 326-370.

[104]

Yuan ML, Wake MH, Wang IJ (2019). Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution 73, 231-244.

[105]

Zaaf A, Herrel A, Aerts P, De Vree F (1999). Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria). Zoomorphology 119, 9-22.

[106]

Zaaf A, Van Damme R (2001). Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): A phylogenetically informed analysis. Zoomorphology 121, 45-53.

[107]

Zani (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology 13, 316-325.

[108]

Zheng P, Liang T, An J, Shi L (2020). Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus. Scientific Reports 10, 22068.

RIGHTS & PERMISSIONS

2024 The Author(s). Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/