Fossil and modern penguin tarsometatarsi: cavities, vascularity, and resilience

Piotr JADWISZCZAK , Ashley KRÜGER , Thomas MÖRS

Integrative Zoology ›› 2025, Vol. 20 ›› Issue (3) : 551 -567.

PDF
Integrative Zoology ›› 2025, Vol. 20 ›› Issue (3) : 551 -567. DOI: 10.1111/1749-4877.12852
ORIGINAL ARTICLE

Fossil and modern penguin tarsometatarsi: cavities, vascularity, and resilience

Author information +
History +
PDF

Abstract

Penguin tarsometatarsi are shortened and flattened, and studies devoted to the internal characteristics of these composite bones are very limited. Therefore, we present here a comprehensive, x-ray-microscopy-based analysis based on tarsometatarsi of Eocene stem Sphenisciformes from Seymour Island (Antarctic Peninsula) as well as recent Aptenodytes forsteri, A. patagonicus, and Pygoscelis adeliae penguins. Our study focuses on four aspects: size variability of the medullary cavities, vascularization patterns with emphasis on diaphyseal vessels, cross-sectional anisotropy, and diaphyseal resistance to bending forces. Small-sized Eocene penguins (Delphinornis and Marambiornopsis) show well-developed tarsometatarsal medullary cavities, whereas the cavities of “giant” early Sphenisciformes are either smaller (Palaeeudyptes) or show a conspicuous intermetatarsal size gradient (Anthropornis). Extant penguins exhibit a decrease in cavity dimensions as their body size increases. Distributional tendencies of primary diaphyseal nutrient foramina are quite similar in the smaller Delphinornis, Marambiornopsis, and extant Pygoscelis on one side and in Palaeeudyptes and extant Aptenodytes on the other. Anthropornis shows a unique, plesiomorphic pattern with a prevalence of plantar blood supply to the metatarsals. The diaphyseal nutrient canals diverge in orientation, some obliquely away from the proximal part, others with disparate trajectories. Cross-sectional anisotropy along the tarsometatarsal shaft generally appears to be rather low. Clustering of coherency curves along certain tarsometatarsal segments may reflect a selection process that exerts a significant influence within biomechanically crucial sections. Diaphyseal resistance to mediolateral bending forces is explicitly more efficient in extant penguins than in Eocene Sphenisciformes. This can be interpreted as an adaptation to the waddling gait of extant penguins.

Keywords

Antarctica / Cenozoic / Sphenisciformes / tarsometatarsus / XRM-based analyses

Cite this article

Download citation ▾
Piotr JADWISZCZAK, Ashley KRÜGER, Thomas MÖRS. Fossil and modern penguin tarsometatarsi: cavities, vascularity, and resilience. Integrative Zoology, 2025, 20(3): 551-567 DOI:10.1111/1749-4877.12852

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acosta Hospitaleche C, Hagström J, Reguero M, Mörs T (2017). Historical perspective of Otto Nordenskjöld´s Antarctic fossil penguin collection and Carl Wiman's contribution. Polar Record 53, 364-375.

[2]

Acosta Hospitaleche C, Jadwiszczak P, Clarke JA, Cenizo M (2019). The fossil record of birds from the James Ross Basin, West Antarctica. Advances in Polar Science 30, 251-273.

[3]

Allan GH, Cassey P, Snelling EP, Maloney S, Seymour RS (2014). Blood flow for bone remodelling correlates with locomotion in living and extinct birds. The Journal of Experimental Biology 217, 2956-2962.

[4]

Baumel JJ, Witmer LM (1993). Osteologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd edn. Nuttall Ornithological Club, Cambridge, MA, pp. 45-132.

[5]

Blokland JC, Reid CM, Worthy TH, Tennyson AJD, Clarke JA, Scofield RP (2019). Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes). Palaeontologia Electronica 22.3.78, 1-92.

[6]

Botelho JF, Smith-Paredes D, Soto-Acuña S, Núñez-León D, Palma V, Vargas AO (2017). Greater growth of proximal metatarsals in bird embryos and the evolution of hallux position in the grasping foot. Journal of Experimental Zoology 328B, 106-118.

[7]

Cerda IA, Tambussi CP, Degrange FJ (2015). Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes). Historical Biology 27, 549-557.

[8]

Cole TL, Zhou C, Fang M et al. (2022). Genomic insights into the secondary aquatic transition of penguins. Nature Communications 13, 3912.

[9]

Currey JD (2003). The many adaptations of bone. Journal of Biomechanics 36, 1487-1495

[10]

Currey JD (2006). Bones. Structure and Mechanics. Princeton University Press, Princeton.

[11]

Davis LS, Renner M (2003). Penguins. Yale University Press, New Haven, CT.

[12]

de Margerie E, Sanchez S, Cubo J, Castanet J (2005). Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. The Anatomical Record Part A 289A, 49-66.

[13]

Doube M, Yen SCW, Kłosowski MM et al. (2012). Whole-bone scaling of the avian pelvic limb. Journal of Anatomy 221, 21-29.

[14]

Evans AH (1900). Birds. In: Harmer SF, Shipley AE, eds. The Cambridge Natural History, vol. IX. Macmillan, London, pp. 1-635.

[15]

Foote M, Miller AI (2007). Principles of Paleontology, 3rd edn. Freeman, New York.

[16]

Garat LM, Talevi M, Acosta Hospitaleche C (2023). Osteohistology of the Antarctic penguin Pygoscelis adeliae (Aves, Sphenisciformes): Definitive evidence of medullary bone. Polar Biology 46, 959-969.

[17]

Griffin TM, Kram R (2000). Penguin waddling is not wasteful. Nature 408, 929

[18]

Habib MB, Ruff CB (2008). The effects of locomotion on the structural characteristics of avian limb bones. Zoological Journal of the Linnean Society 153, 601-624.

[19]

Harada N, Tanaka H (2022). Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: Body banking and wing upstroke generate centripetal force. Journal of Experimental Biology 225, jeb244124.

[20]

Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU (2017). Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. Journal of Musculoskeletal & Neuronal Interactions 17, 114-139.

[21]

Houssaye A (2009). ‘Pachyostosis’ in aquatic amniotes: a review. Integrative Zoology 4, 325-340.

[22]

Houssaye A, Sander PM, Klein N (2016). Adaptive patterns in aquatic amniote bone microanatomy—More complex than previously thought. Integrative and Comparative Biology 56, 1349-1369.

[23]

Hu Q, Nelson TJ, Seymour RS (2022). Morphology of the nutrient artery and its foramen in relation to femoral bone perfusion rates of laying and non-laying hens. Journal of Anatomy 240, 94-106.

[24]

Hughes H (1952). The factors determining the direction of the canal for the nutrient artery in the long bones of mammals and birds. Acta Anatomica 15, 261-280.

[25]

Huie JM, Summers AP, Kawano SM (2022). SegmentGeometry: A tool for measuring second moment of area in 3D slicer. Integrative Organismal Biology 4, obac009.

[26]

ICZN (1999). International Code of Zoological Nomenclature, 4th edn. International Trust for Zoological Nomenclature, London.

[27]

Jadwiszczak P (2001). Body size of Eocene Antarctic penguins. Polish Polar Research 22, 147-158.

[28]

Jadwiszczak P (2015). Another look at tarsometatarsi of early penguins. Polish Polar Research 36, 343-354.

[29]

Jadwiszczak P, Mörs T (2011). Aspects of diversity in early Antarctic penguins. Acta Palaeontologica Polonica 56, 269-277.

[30]

Jadwiszczak P, Mörs T (2019). First partial skeleton of Delphinornis larseni Wiman, 1905, a slender-footed penguin from the Eocene of Antarctic Peninsula. Palaeontologia Electronica 22.2.32A, 1-31.

[31]

Jadwiszczak P, Reguero M, Mörs T (2021). A new small-sized penguin from the late Eocene of Seymour Island with additional material of Mesetaornis polaris. GFF 143, 283-291.

[32]

Jadwiszczak P, Svensson-Marcial A, Mörs T (2023). An integrative insight into the synsacral canal of fossil and extant Antarctic penguins. Integrative Zoology 18, 237-253.

[33]

Kikinis R, Pieper SD, Vosburgh KG (2014). 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA, ed. Intraoperative Imaging and Image-Guided Therapy. Springer, New York, pp. 277-289.

[34]

Kooyman GL, Drabek CM, Elsner R, Campbell WB (1971). Diving behaviour of the Emperor Penguins, Aptenodytes forsteri. The Auk 88, 775-795.

[35]

Ksepka DT, Werning S, Sclafani M, Boles ZM (2015). Bone histology in extant and fossil penguins (Aves: Sphenisciformes). Journal of Anatomy 227, 611-630.

[36]

Kurz MJ, Scott-Pandorf M, Arellano C, Olsen D, Whitaker G (2008). The penguin waddling gait pattern has a more consistent step width than step length. Journal of Theoretical Biology 252, 272-276.

[37]

Main RP (2021). Basic principles and methodologies in measuring bone biomechanics. In: De Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, eds. Vertebrate Skeletal Histology and Paleohistology. CRC Press, Boca Raton, pp. 668-687.

[38]

Main RP, Simons ELR, Lee AH (2021). Interpreting mechanical function in extant and fossil long bones. In: De Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, eds. Vertebrate Skeletal Histology and Paleohistology. CRC Press, Boca Raton, pp. 688-723.

[39]

Marelli CA, Simons ELR (2014). Microstructure and cross-sectional shape of limb bones in Great Horned Owls and Red-Tailed Hawks: How do these features relate to differences in flight and hunting behavior? PLoS ONE 9, e106094.

[40]

Mayr G, De Pietri V, Love L, Mannering AA, Scofield RP (2017). A well-preserved new mid-paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand. Journal of Vertebrate Paleontology 37, e1398169.

[41]

Meister W (1962). Histological structure of the long bones of penguins. The Anatomical Record 143, 377-387.

[42]

Midtgård U (1982). Patterns in the blood vascular system in the pelvic limb of birds. Journal of Zoology, London 196, 545-567.

[43]

Myrcha A, Jadwiszczak P, Tambussi CP et al. (2002). Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research 23, 5-46.

[44]

Püspöki Z, Storath M, Sage D, Unser M (2016). Transforms and operators for directional bioimage analysis: A survey. In: de Vos W, Munck S, Timmermans JP, eds. Focus on Bio-Image Informatics. Advances in Anatomy, Embryology and Cell Biology, vol. 219. Springer, Cham, pp. 69-93.

[45]

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from URL: https://www.R-project.org/

[46]

Schindelin J, Arganda-Carreras I, Frise E et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods 9, 676-682.

[47]

Simpson GG (1940). Types in modern taxonomy. American Journal of Science 238, 413-431.

[48]

Simpson GG (1946). Fossil penguins. Bulletin of the American Museum of Natural History 87, 1-99.

[49]

Slack KE, Jones CM, Ando T et al. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution 23, 1144-1155.

[50]

Watson M (1883). Report on the anatomy of the Spheniscidae collected by H.M.S. Challenger, during the years 1873-1876. Reports of Science Research Voyage of H.M.S. Challenger. Zoology 7, 1-244.

[51]

Williams TD (1995). The Penguins. Oxford University Press, Oxford.

[52]

Zuckerkandl E (1895). Zur Anatomie und Entwicklungsgeschichte der Arterien des Unterschenkels und des Fusses. Anatomisches Institut zu Wien.

RIGHTS & PERMISSIONS

2024 The Author(s). Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/