Linking Lattice Strain and Fractal Dimensions to Non-monotonic Volume Changes in Irradiated Nuclear Graphite

David J. Sprouster , Sean Fayfar , Durgesh K. Rai , Anne Campbell , Jan Ilavsky , Lance L. Snead , Boris Khaykovich

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (5) : 714 -718.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (5) : 714 -718. DOI: 10.1002/idm2.70008
SHORT COMMUNICATION

Linking Lattice Strain and Fractal Dimensions to Non-monotonic Volume Changes in Irradiated Nuclear Graphite

Author information +
History +
PDF

Abstract

Graphite's resilience to high temperatures and neutron damage makes it vital for nuclear reactors, yet irradiation alters its microstructure, degrading key properties. We used small- and wide-angle X-ray scattering to study neutron-irradiated fine-grain nuclear graphite (Grade G347A) across varied temperatures and fluences. Results show significant shifts in internal strain and porosity, correlating with radiation-induced volume changes. Notably, porosity volume distribution (fractal dimensions) follows non-monotonic volume changes, suggesting a link to the Weibull distribution of fracture stress.

Keywords

fractal dimensions / nuclear graphite / radiation damage / X-ray scattering

Cite this article

Download citation ▾
David J. Sprouster, Sean Fayfar, Durgesh K. Rai, Anne Campbell, Jan Ilavsky, Lance L. Snead, Boris Khaykovich. Linking Lattice Strain and Fractal Dimensions to Non-monotonic Volume Changes in Irradiated Nuclear Graphite. Interdisciplinary Materials, 2025, 4(5): 714-718 DOI:10.1002/idm2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Zohuri, “Generation IV Nuclear Reactors.” Nuclear Reactor Technology Development and Utilization (Elsevier, 2020), 213-246.

[2]

L. L. Snead, C. I. Contescu, T. S. Byun, and W. Porter, “Thermophysical Property and Pore Structure Evolution in Stressed and Non-Stressed Neutron Irradiated IG-110 Nuclear Graphite,” Journal of Nuclear Materials 476 (2016): 102-109, https://doi.org/10.1016/j.jnucmat.2016.04.042.

[3]

A. A. Campbell, Y. Katoh, M. A. Snead, and K. Takizawa, “Property Changes of G347A Graphite Due to Neutron Irradiation,” Carbon 109 (2016): 860-873.

[4]

G. B. Neighbour, “Modelling of Dimensional Changes in Irradiated Nuclear Graphites,” Journal of Physics D: Applied Physics 33, no. 22 (2000): 2966-2972.

[5]

B. T. Kelly and T. D. Burchell, “Structure-Related Property Changes in Polycrystalline Graphite Under Neutron Irradiation,” Carbon 32, no. 3 (1994): 499-505.

[6]

C. Karthik, J. Kane, D. P. Butt, W. E. Windes, and R. Ubic, “Neutron Irradiation Induced Microstructural Changes in NBG-18 and IG-110 Nuclear Graphites,” Carbon 86 (2015): 124-131.

[7]

R. Krishna, J. Wade, A. N. Jones, M. Lasithiotakis, P. M. Mummery, and B. J. Marsden, “An Understanding of Lattice Strain, Defects and Disorder in Nuclear Graphite,” Carbon 124 (2017): 314-333.

[8]

A. Chartier, L. Van Brutzel, and J. Pageot, “Irradiation Damage in Nuclear Graphite at the Atomic Scale,” Carbon 133 (2018): 224-231.

[9]

Y. Vertyagina and T. J. Marrow, “Multifractal-Based Assessment of Gilsocarbon Graphite Microstructures,” Carbon 109 (2016): 711-718.

[10]

Z. Zhou, W. G. Bouwman, H. Schut, et al., “From Nanopores to Macropores: Fractal Morphology of Graphite,” Carbon 96 (2016): 541-547, https://doi.org/10.1016/j.carbon.2015.09.069.

[11]

Z. Mileeva, D. K. Ross, and S. M. King, “A Study of the Porosity of Nuclear Graphite Using Small-Angle Neutron Scattering,” Carbon 64 (2013): 20-26.

[12]

P. Pfeifer and D. Avnir, “Chemistry in Noninteger Dimensions Between Two and Three. I. Fractal Theory of Heterogeneous Surfaces,” Journal of Chemical Physics 79, no. 7 (1983): 3558-3565.

[13]

S. K. Sinha, “Scattering From Fractal Structures,” Physica D: Nonlinear Phenomena 38, no. 1-3 (1989): 310-314.

[14]

J. Teixeira, “Small-Angle Scattering by Fractal Systems,” Journal of Applied Crystallography 21, no. 6 (1988): 781-785.

[15]

P. W. Schmidt, “Small-Angle Scattering Studies of Disordered, Porous and Fractal Systems,” Journal of Applied Crystallography 24, no. 5 (1991): 414-435, https://doi.org/10.1107/S0021889891003400.

[16]

M. A. Issa, M. A. Issa, M. S. Islam, and A. Chudnovsky, “Fractal Dimension—A Measure of Fracture Roughness and Toughness of Concrete,” Engineering Fracture Mechanics 70, no. 1 (2003): 125-137.

[17]

L. M. Anovitz, G. W. Lynn, D. R. Cole, et al., “A New Approach to Quantification of Metamorphism Using Ultra-Small and Small Angle Neutron Scattering,” Geochimica et Cosmochimica Acta 73, no. 24 (2009): 7303-7324, https://doi.org/10.1016/j.gca.2009.07.040.

[18]

J. Bahadur, Y. B. Melnichenko, M. Mastalerz, A. Furmann, and C. R. Clarkson, “Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study,” Energy & Fuels 28, no. 10 (2014): 6336-6344, https://doi.org/10.1021/ef501832k.

[19]

A. Fabre, T. Steur, W. G. Bouwman, M. T. Kreutzer, and J. R. van Ommen, “Characterization of the Stratified Morphology of Nanoparticle Agglomerates,” Journal of Physical Chemistry C 120, no. 36 (2016): 20446-20453.

[20]

G. R. McDowell, M. D. Bolton, and D. Robertson, “The Fractal Crushing of Granular Materials,” Journal of the Mechanics and Physics of Solids 44, no. 12 (1996): 2079-2101.

[21]

A. R. Russell, “A Compression Line for Soils With Evolving Particle and Pore Size Distributions Due to Particle Crushing,” Géotechnique Letters 1, no. 1 (2011): 5-9.

[22]

Y. Xu, “Fractal Dimension of Demolition Waste Fragmentation and Its Implication of Compactness,” Powder Technology 339 (2018): 922-929.

[23]

D. L. Turcotte, “Fractals and Fragmentation,” Journal of Geophysical Research: Solid Earth 91, no. B2 (1986): 1921-1926.

[24]

T. L. Anderson, “Application of Fractal Geometry to Damage Development and Brittle Fracture in Materials,” Scripta Metallurgica 23, no. 1 (1989): 97-102.

[25]

A. Carpinteri, “Fractality of Scale-Invariant Cohesive Constitutive Laws.” Fracture and Complexity: One Century since Griffith's Milestone (Springer Netherlands, 2021), 623-687, https://doi.org/10.1007/978-94-024-2026-5_11.

[26]

M. Srinivasan, “On Estimating the Fracture Probability of Nuclear Graphite Components,” Journal of Nuclear Materials 381, no. 1-2 (2008): 185-198.

[27]

M. C. Carroll, W. E. Windes, D. T. Rohrbaugh, J. P. Strizak, and T. D. Burchell, “Leveraging Comprehensive Baseline Datasets to Quantify Property Variability in Nuclear-Grade Graphites,” Nuclear Engineering and Design 307 (2016): 77-85.

[28]

R. H. Telling and M. I. Heggie, “Radiation Defects in Graphite,” Philosophical Magazine 87, no. 31 (2007): 4797-4846.

[29]

L. L. Snead, T. D. Burchell, and Y. Katoh, “Swelling of Nuclear Graphite and High Quality Carbon Fiber Composite Under Very High Irradiation Temperature,” Journal of Nuclear Materials 381, no. 1-2 (2008): 55-61.

[30]

G. K. Williamson and W. H. Hall, “X-Ray Line Broadening From Filed Aluminium and Wolfram,” Acta Metallurgica 1, no. 1 (1953): 22-31.

[31]

W. T. Eeles, “Small-Angle X-Ray Scattering by Pile-Irradiated Graphite,” Nature 188, no. 4747 (1960): 287-289.

[32]

D. G. Martin and J. Caisley, “Some Studies of the Effect of Irradiation on the Neutron Small Angle Scattering From Graphite,” Carbon 15, no. 4 (1977): 251-255.

[33]

O. Glatter and O. Kratky, Small Angle X-Ray Scattering (Academic Press, 1982).

[34]

K. Rosahl, J. D. Booker, S. Lewis, and D. J. Smith, “A Statistical Approach for Transferring Fracture Events Across Different Sample Shapes,” Engineering Fracture Mechanics 78, no. 1 (2011): 47-59.

RIGHTS & PERMISSIONS

Published 2025. This article is a U.S. Government work and is in the public domain in the USA.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/