Evidence of X-Ray Magnetic Circular Dichroism and Low-Field Microwave Absorption in Room-Temperature Organic Ferromagnetic Semiconductor

Jiaji Yang , Hanlin Gan , Xiandong He , Yanuo Zhu , Shaohua Tong , Wei Cui , Jiang Zhang , Qinglin Jiang , Yuguang Ma

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) : 576 -584.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) :576 -584. DOI: 10.1002/idm2.70002
SHORT COMMUNICATION

Evidence of X-Ray Magnetic Circular Dichroism and Low-Field Microwave Absorption in Room-Temperature Organic Ferromagnetic Semiconductor

Author information +
History +
PDF

Abstract

Room-temperature organic ferromagnetic semiconductors represent a promising frontier in developing next-generation electronic and spintronic devices. However, the origin of magnetic moments in organic ferromagnets and the acquisition of critical evidence for magnetic ordering remain incompletely understood. This study presents compelling evidence for room-temperature ferromagnetism in N,N′-diamino perylene bisimide (2NH2-PBI) radical aggregates through a comprehensive analysis utilizing X-ray magnetic circular dichroism (XMCD), low-field microwave absorption (LFMA) techniques and magnetic characterization. The 2NH2-PBI samples, prepared via hydrothermal reduction, exhibit a significant saturation magnetization of 0.8 emu g−1 (336.3 emu mol−1) at 300 K, with a coercive field of 170 Oe. The XMCD measurements at the carbon K-edge exhibited a pronounced dichroic signal (~8.7%), confirming the origin of ferromagnetism in the π-conjugated electrons of the perylene core. Density functional theory calculations further support this finding by demonstrating that spin density is primarily delocalized on the π-conjugated skeleton, giving a microscopic explanation for the magnetic properties of 2NH2-PBI radicals. Furthermore, LFMA studies provide additional evidence of ferromagnetic ordering, showcasing hysteretic behavior consistent with domain wall dynamics. Our work indicates that imide-based radical molecules with extended π-conjugated structures constitute a class of effective magnetic functional units.

Keywords

low-field microwave absorption / organic ferromagnetic semiconductor / perylene bisimide derivatives / X-ray magnetic circular dichroism

Cite this article

Download citation ▾
Jiaji Yang, Hanlin Gan, Xiandong He, Yanuo Zhu, Shaohua Tong, Wei Cui, Jiang Zhang, Qinglin Jiang, Yuguang Ma. Evidence of X-Ray Magnetic Circular Dichroism and Low-Field Microwave Absorption in Room-Temperature Organic Ferromagnetic Semiconductor. Interdisciplinary Materials, 2025, 4(4): 576-584 DOI:10.1002/idm2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications,” Reviews of Modern Physics 76 (2004): 323–410.

[2]

K. Ando, “Seeking Room-Temperature Ferromagnetic Semiconductors,” Science 312 (2006): 1883–1885.

[3]

T. Dietl, “A Ten-Year Perspective on Dilute Magnetic Semiconductors and Oxides,” Nature Materials 9 (2010): 965–974.

[4]

F. Pulizzi, “Is It Really Intrinsic Ferromagnetism?,” Nature Materials 9 (2010): 956–957.

[5]

R. M. White, “Opportunities in Magnetic Materials,” Science 229 (1985): 11–15.

[6]

J. S. Miller and A. J. Epstein, “Organic and Organometallic Molecular Magnetic Materials-Designer Magnets,” Angewandte Chemie, International Edition in English 33 (1994): 385–415.

[7]

J. S. Miller, “Organic Magnets-A History,” Advanced Materials 14 (2002): 1105–1110.

[8]

S. J. Blundell, F. L. Pratt, S. J. Blundell, and F. L. Pratt, “Organic and Molecular Magnets,” Journal of Physics: Condensed Matter 16 (2004): R771–R828.

[9]

H. M. McConnell, “Ferromagnetism in Solid Free Radicals,” Journal of Chemical Physics 39 (1963): 1910.

[10]

K. Awaga and Y. Maruyama, “Ferromagnetic Intermolecular Interaction of the Organic Radical, 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1h-imidazolyl-1-oxy 3-Oxide,” Chemical Physics Letters 158 (1989): 556–558.

[11]

K. Awaga and Y. Maruyama, “Ferromagnetic and Antiferromagnetic Intermolecular Interactions of Organic Radicals, α-Nitronyl Nitroxides II,” Journal of Chemical Physics 91 (1989): 2743–2747.

[12]

M. Tamura, Y. Nakazawa, D. Shiomi, et al., “Bulk Ferromagnetism in the β-Phase Crystal of the P-Nitrophenyl Nitronyl Nitroxide Radical,” Chemical Physics Letters 186 (1991): 401–404.

[13]

R. Chiarelli, M. A. Novak, A. Rassat, and J. L. Tholence, “A Ferromagnetic Transition at 1.48 K in an Organic Nitroxide,” Nature 363 (1993): 147–149.

[14]

A. J. Banister, N. Bricklebank, I. Lavender, et al., “Spontaneous Magnetization in a Sulfur–Nitrogen Radical at 36 K,” Angewandte Chemie, International Edition in English 35 (1996): 2533–2535.

[15]

A. Alberola, R. J. Less, C. M. Pask, et al., “A Thiazyl-Based Organic Ferromagnet,” Angewandte Chemie International Edition 42 (2003): 4782–4785.

[16]

W. Fujita and K. Awaga, “Organic Ferromagnetism of Tc = 6.7 k Driven by Evaporation of Crystal Solvent,” Chemical Physics Letters 357 (2002): 385–388.

[17]

Q. Jiang, J. Zhang, Z. Mao, et al., “Room-Temperature Ferromagnetism in Perylene Diimide Organic Semiconductor,” Advanced Materials 34 (2022): 2108103.

[18]

H. Gan, Q. Jiang, and Y. Ma, “A Theoretical Study on π-Stacking and Ferromagnetism of the Perylene Diimide Radical Anion Dimer and Tetramer,” Physical Chemistry Chemical Physics 25 (2023): 30005–30013.

[19]

H. Zhou, Z. Cheng, Z. Ai, X. Li, L. Hu, and F. Zhang, “Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process,” Magnetochemistry 10 (2024): 34.

[20]

G. van der Laan and A. I. Figueroa, “X-Ray Magnetic Circular Dichroism—A Versatile Tool to Study Magnetism,” Coordination Chemistry Reviews 277–278 (2014): 95–129.

[21]

R. Höhne and P. Esquinazi, “Can Carbon Be Ferromagnetic?,” Advanced Materials 14 (2002): 753–756.

[22]

H. Ohldag, T. Tyliszczak, R. Höhne, et al., “Π-Electron Ferromagnetism in Metal-Free Carbon Probed by Soft X-Ray Dichroism,” Physical Review Letters 98 (2007): 187204.

[23]

T. Junghoefer, A. Calzolari, I. Baev, et al., “Magnetic Behavior in Metal-Free Radical Thin Films,” Chem 8 (2022): 801–814.

[24]

R. Valenzuela, G. Alvarez, H. Montiel, et al., “Characterization of Magnetic Materials by Low-Field Microwave Absorption Techniques,” Journal of Magnetism and Magnetic Materials 320 (2008): 1961–1965.

[25]

G. Alvarez and R. Zamorano, “Characteristics of the Magnetosensitive Non-Resonant Power Absorption of Microwave by Magnetic Materials,” Journal of Alloys and Compounds 369 (2004): 231–234.

[26]

B. Cieniek, I. Stefaniuk, I. Virt, R. V. Gamernyk, and I. Rogalska, “Zinc-Cobalt Oxide Thin Films: High Curie Temperature Studied by Electron Magnetic Resonance,” Molecules 27 (2022): 8500.

[27]

H. Montiel, G. Alvarez, I. Betancourt, R. Zamorano, and R. Valenzuela, “Correlations Between Low-Field Microwave Absorption and Magnetoimpedance in Co-Based Amorphous Ribbons,” Applied Physics Letters 86 (2005): 072503.

[28]

S. M. Long, P. Zhou, J. S. Miller, and A. J. Epstein, “Electron Spin Resonance Study of the Disorder in the v(tcne)x·y(mecn) high-Tc Molecule-Based Magnet,” Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals 272 (1995): 207–215.

[29]

G. Mozurkewich, J. H. Elliott, M. Hardiman, and R. Orbach, “Exchange-Narrowed Anisotropy Contribution to the EPR Width and Shift in the Ag-Mn Spin-Glass,” Physical Review B 29 (1984): 278–287.

[30]

A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, and U. Ebels, “Dipolar Interactions in Arrays of Nickel Nanowires Studied by Ferromagnetic Resonance,” Physical Review B 63 (2001): 104415.

[31]

R. O. Marcon and S. Brochsztain, “Aggregation of 3,4,9,10-perylenediimide Radical Anions and Dianions Generated by Reduction With Dithionite in Aqueous Solutions,” Journal of Physical Chemistry A 113 (2009): 1747–1752.

[32]

Y. Sheng, W. Li, L. Xu, and Y. Zhu, “High Photocatalytic Oxygen Evolution via Strong Built-In Electric Field Induced by High Crystallinity of Perylene Imide Supramolecule,” Advanced Materials 34 (2022): 2102354.

[33]

Y. Jia, Q. Jiang, B. Wang, J. Yang, J. Zhang, and Y. Ma, “Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping,” Chemical Research in Chinese Universities 39 (2023): 187–191.

[34]

J. Mahmood, J. Park, D. Shin, et al., “Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure,” Chem 4 (2018): 2357–2369.

[35]

P.-M. Allemand, K. C. Khemani, A. Koch, et al., “Organic Molecular Soft Ferromagnetism in a Fullerene C60,” Science 253 (1991): 301–302.

[36]

T. Funk, A. Deb, S. J. George, H. Wang, and S. P. Cramer, “X-Ray Magnetic Circular Dichroism—A High Energy Probe of Magnetic Properties,” Coordination Chemistry Reviews 249 (2005): 3–30.

[37]

J. Taborski, P. Väterlein, H. Dietz, U. Zimmermann, and E. Umbach, “Nexafs Investigations on Ordered Adsorbate Layers of Large Aromatic Molecules,” Journal of Electron Spectroscopy and Related Phenomena 75 (1995): 129–147.

[38]

J. H. Oh, Y. S. Sun, R. Schmidt, et al., “Interplay Between Energetic and Kinetic Factors on the Ambient Stability of N-Channel Organic Transistors Based on Perylene Diimide Derivatives,” Chemistry of Materials 21 (2009): 5508–5518.

[39]

Y. Liu, H. Lv, B. Yuan, et al., “Room-Temperature Long-Range Ferromagnetic Order in a Confined Molecular Monolayer,” Nature Physics 20 (2024): 281–286.

[40]

S. J. Lee, C. C. Tsai, H. Cho, et al., “Hysteretic Characteristics of Low-Field Microwave Absorption of a Co Thin Film,” Journal of Applied Physics 106 (2009): 063922.

[41]

S. Mankovsky, S. Polesya, and H. Ebert, “Exchange Coupling Constants at Finite Temperature,” Physical Review B 102 (2020): 134434.

[42]

X. G. Wang, L. Chotorlishvili, G. H. Guo, et al., “Thermally Induced Magnonic Spin Current, Thermomagnonic Torques, and Domain-Wall Dynamics in the Presence of Dzyaloshinskii-Moriya Interaction,” Physical Review B 94 (2016): 104410.

[43]

X. He, D. Zhao, Y. Yao, et al., “Magnetic Properties of Self-Assemble Naphthalene Diimide Radical Aggregates,” Small 20 (2024): 2311766.

[44]

J. Huang and M. Kertesz, “Intermolecular Covalent π−π Bonding Interaction Indicated by Bond Distances, Energy Bands, and Magnetism in Biphenalenyl Biradicaloid Molecular Crystal,” Journal of the American Chemical Society 129 (2007): 1634–1643.

[45]

Z. Mou and M. Kertesz, “Pancake Bond Orders of a Series of π-Stacked Triangulene Radicals,” Angewandte Chemie International Edition 56 (2017): 10188–10191.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

/