Creating Biomimetic Bouligand Architectures for Biomedical and Healthcare Applications

Hongye Yang , Xinyu Zhang , Shilei Wang , Yize Wang , Rui Xiong , Cui Huang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) : 539 -567.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) :539 -567. DOI: 10.1002/idm2.12260
REVIEW

Creating Biomimetic Bouligand Architectures for Biomedical and Healthcare Applications

Author information +
History +
PDF

Abstract

The hierarchical Bouligand structure, ubiquitous in organisms and endowing natural creatures with exceptional performance attributes, stands as a prime example of nature's evolutionary prowess. Following the example of nature, the construction of biomimetic Bouligand structures will significantly propel advancements and innovations within the domain of biomedical and healthcare applications. In this review, we summarize cutting-edge research progress of biomimetic Bouligand architectures. Firstly, the natural Bouligand structures in animals, plants, and humans are introduced. On this basis, the relationship between properties and Bouligand structure is briefly discussed, including toughening mechanism, optical characteristics, and biological properties. Subsequently, the review details the construction strategies of the biomimetic Bouligand architectures, covering a variety of methods such as self-assembly, biomimetic mineralization, shear brushing, electrostatic spinning, and 3D printing. Finally, the utilization of biomimetic Bouligand architectures in biomedical and healthcare fields, especially for bone regeneration, tooth repair, body protection, and biosensor transmission, is discussed in detail. Despite the significant theoretical advantages of Bouligand structure, its feasibility in biomedical and healthcare applications still remains in its infancy. We eagerly anticipate the future development of biomimetic Bouligand architectures with superior performance, tailored to clinical scenarios and health needs, thereby fulfilling the grand vision of “inspiration from nature and giving back to life.”

Keywords

biomedical / biomimetic / Bouligand / healthcare / mineralization / self-assembly

Cite this article

Download citation ▾
Hongye Yang, Xinyu Zhang, Shilei Wang, Yize Wang, Rui Xiong, Cui Huang. Creating Biomimetic Bouligand Architectures for Biomedical and Healthcare Applications. Interdisciplinary Materials, 2025, 4(4): 539-567 DOI:10.1002/idm2.12260

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhu, D. Joralmon, W. Shan, et al., “3D Printing Biomimetic Materials and Structures for Biomedical Applications,” Bio-Design and Manufacturing 4, no. 2 (2021): 405–428, https://doi.org/10.1007/s42242-020-00117-0.

[2]

Y. Bouligand, “Twisted Fibrous Arrangements in Biological Materials and Cholesteric Mesophases,” Tissue and Cell 4 (1972): 189–217, https://doi.org/10.1016/S0040-8166(72)80042-9.

[3]

J. C. Weaver, G. W. Milliron, A. Miserez, et al., “The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer,” Science 336, no. 6086 (2012): 1275–1280, https://doi.org/10.1126/science.1218764.

[4]

S. Amini, M. Tadayon, J. J. Loke, et al., “A Diecast Mineralization Process Forms the Tough Mantis Shrimp Dactyl Club,” Proceedings of the National Academy of Sciences 116, no. 18 (2019): 8685–8692, https://doi.org/10.1073/pnas.1816835116.

[5]

R. P. Behera and H. Le Ferrand, “Impact-Resistant Materials Inspired by the Mantis Shrimp's Dactyl Club,” Matter 4, no. 9 (2021): 2831–2849, https://doi.org/10.1016/j.matt.2021.07.012.

[6]

S. Murcia, E. Lavoie, T. Linley, A. Devaraj, E. A. Ossa, and D. Arola, “The Natural Armors of Fish: A Comparison of the Lamination Pattern and Structure of Scales,” Journal of the Mechanical Behavior of Biomedical Materials 73 (2017): 17–27, https://doi.org/10.1016/j.jmbbm.2016.09.025.

[7]

Y. Zheng, C. Guo, and X. Li, “Analysis and Verification of a Biomimetic Design Model Based on Fish Skin,” Materials Research Express 8, no. 3 (2021): 035014, https://doi.org/10.1088/2053-1591/abeeca.

[8]

N. Xiao, M. Felhofer, S. J. Antreich, et al., “Twist and Lock: Nutshell Structures for High Strength and Energy Absorption,” Royal Society Open Science 8, no. 8 (2021): 210399, https://doi.org/10.1098/rsos.210399.

[9]

E. Beniash, C. A. Stifler, C. Y. Sun, et al., “The Hidden Structure of Human Enamel,” Nature Communications 10, no. 1 (2019): 4383, https://doi.org/10.1038/s41467-019-12185-7.

[10]

U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, “Bioinspired Structural Materials,” Nature Materials 14, no. 1 (2015): 23–36, https://doi.org/10.1038/nmat4089.

[11]

Y. Luo, Y. Li, K. Liu, et al., “Modulating of Bouligand Structure and Chirality Constructed Bionically Based on the Self-Assembly of Chitin Whiskers,” Biomacromolecules 24, no. 6 (2023): 2942–2954, https://doi.org/10.1021/acs.biomac.3c00419.

[12]

E. A. Zimmermann, B. Gludovatz, E. Schaible, et al., “Mechanical Adaptability of the Bouligand-Type Structure in Natural Dermal Armour,” Nature Communications 4, no. 1 (2013): 2634, https://doi.org/10.1038/ncomms3634.

[13]

P. Mohammadi, J. A. Gandier, F. Nonappa, W. Wagermaier, A. Miserez, and M. Penttilä, “Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins With Controlled Biomineralization,” Advanced Materials 33, no. 42 (2021): 2102658, https://doi.org/10.1002/adma.202102658.

[14]

L. Fernández del Río, H. Arwin, and K. Järrendahl, “Polarizing Properties and Structure of the Cuticle of Scarab Beetles From the Chrysina Genus,” Physical Review E 94, no. 1 (2016): 012409, https://doi.org/10.1103/PhysRevE.94.012409.

[15]

A. R. Parker, “515 Million Years of Structural Colour,” Journal of Optics A: Pure and Applied Optics 2, no. 6 (2000): R15–R28, https://doi.org/10.1088/1464-4258/2/6/201.

[16]

A. Tran, C. E. Boott, and M. J. MacLachlan, “Understanding the Self-Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials,” Advanced Materials 32, no. 41 (2020): 1905876, https://doi.org/10.1002/adma.201905876.

[17]

F. Barthelat, Z. Yin, and M. J. Buehler, “Structure and Mechanics of Interfaces in Biological Materials,” Nature Reviews Materials 1, no. 4 (2016): 16007, https://doi.org/10.1038/natrevmats.2016.7.

[18]

C. Baley, C. Goudenhooft, M. Gibaud, and A. Bourmaud, “Flax Stems: From a Specific Architecture to an Instructive Model for Bioinspired Composite Structures,” Bioinspiration & Biomimetics 13, no. 2 (2018): 026007, https://doi.org/10.1088/1748-3190/aaa6b7.

[19]

H. Li, R. Tang, J. Dai, et al., “Recent Progress in Flax Fiber-Based Functional Composites,” Advanced Fiber Materials 4, no. 2 (2022): 171–184, https://doi.org/10.1007/s42765-021-00115-6.

[20]

A. P. More, “Flax Fiber–Based Polymer Composites: A Review,” Advanced Composites and Hybrid Materials 5, no. 1 (2022): 1–20, https://doi.org/10.1007/s42114-021-00246-9.

[21]

S. Ling, D. L. Kaplan, and M. J. Buehler, “Nanofibrils in Nature and Materials Engineering,” Nature Reviews Materials 3, no. 4 (2018): 18016, https://doi.org/10.1038/natrevmats.2018.16.

[22]

M. Robin, C. Djediat, A. Bardouil, et al., “Acidic Osteoid Templates the Plywood Structure of Bone Tissue,” Advanced Science 11, no. 9 (2024): e2304454, https://doi.org/10.1002/advs.202304454.

[23]

N. Reznikov, R. Shahar, and S. Weiner, “Three-Dimensional Structure of Human Lamellar Bone: The Presence of Two Different Materials and New Insights Into the Hierarchical Organization,” Bone 59 (2014): 93–104, https://doi.org/10.1016/j.bone.2013.10.023.

[24]

M. M. Giraudguille, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons,” Calcified Tissue International 42, no. 3 (1988): 167–180, https://doi.org/10.1007/BF02556330.

[25]

W. Yang, H. Quan, M. A. Meyers, and R. O. Ritchie, “Arapaima Fish Scale: One of the Toughest Flexible Biological Materials,” Matter 1, no. 6 (2019): 1557–1566, https://doi.org/10.1016/j.matt.2019.09.014.

[26]

E. Loste, R. M. Wilson, R. Seshadri, and F. C. Meldrum, “The Role of Magnesium in Stabilising Amorphous Calcium Carbonate and Controlling Calcite Morphologies,” Journal of Crystal Growth 254, no. 1–2 (2003): 206–218, https://doi.org/10.1016/S0022-0248(03)01153-9.

[27]

X. Pan, H. Chi, C. Luo, X. Feng, Y. Huang, and G. Zhang, “A Novel Metallic Silvery Color Caused by Pointillistic Mixing of Disordered Nano-to Micro-Pixels of Iridescent Colors,” RSC Advances 12, no. 9 (2022): 5534–5539, https://doi.org/10.1039/d1ra08573e.

[28]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly Polarized Light Detection With Hot Electrons in Chiral Plasmonic Metamaterials,” Nature Communications 6 (2015): 8379, https://doi.org/10.1038/ncomms9379.

[29]

Y. Nie and D. Li, “A Multiscale Fracture Model to Reveal the Toughening Mechanism in Bioinspired Bouligand Structures,” Acta Biomaterialia 176 (2024): 267–276, https://doi.org/10.1016/j.actbio.2024.01.038.

[30]

N. Suksangpanya, N. A. Yaraghi, R. B. Pipes, D. Kisailus, and P. Zavattieri, “Crack Twisting and Toughening Strategies in Bouligand Architectures,” International Journal of Solids and Structures 150 (2018): 83–106, https://doi.org/10.1016/j.ijsolstr.2018.06.004.

[31]

K. Wu, Z. Song, S. Zhang, et al., “Discontinuous Fibrous Bouligand Architecture Enabling Formidable Fracture Resistance With Crack Orientation Insensitivity,” Proceedings of the National Academy of Sciences 117, no. 27 (2020): 15465–15472, https://doi.org/10.1073/pnas.2000639117.

[32]

W. Ouyang, B. Gong, H. Wang, F. Scarpa, B. Su, and H. X. Peng, “Identifying Optimal Rotating Pitch Angles in Composites With Bouligand Structure,” Composites Communications 23 (2021): 100602, https://doi.org/10.1016/j.coco.2020.100602.

[33]

M. Moini, J. Olek, J. P. Youngblood, B. Magee, and P. D. Zavattieri, “Additive Manufacturing and Performance of Architectured Cement-Based Materials,” Advanced Materials 30, no. 43 (2018): 1802123, https://doi.org/10.1002/adma.201802123.

[34]

J. S. Shang, N. H. H. Ngern, and V. B. C. Tan, “Crustacean-Inspired Helicoidal Laminates,” Composites Science and Technology 128 (2016): 222–232, https://doi.org/10.1016/j.compscitech.2016.04.007.

[35]

K. Zhang, Y. Sun, Y. Cheng, S. Hou, and J. Fan, “Biomimetic High Toughness Si3N4 Ceramics With Inverse-Bouligand Structure,” Ceramics International 49, no. 13 (2023): 21745–21754, https://doi.org/10.1016/j.ceramint.2023.03.315.

[36]

L. K. Grunenfelder, N. Suksangpanya, C. Salinas, et al., “Bio-Inspired Impact-Resistant Composites,” Acta Biomaterialia 10, no. 9 (2014): 3997–4008, https://doi.org/10.1016/j.actbio.2014.03.022.

[37]

F. Yang, W. Xie, and S. Meng, “Analysis and Simulation of Fracture Behavior in Naturally Occurring Bouligand Structures,” Acta Biomaterialia 135 (2021): 473–482, https://doi.org/10.1016/j.actbio.2021.09.013.

[38]

S. M. Chen, G. Z. Wang, Y. Hou, et al., “Hierarchical and Reconfigurable Interfibrous Interface of Bioinspired Bouligand Structure Enabled by Moderate Orderliness,” Science Advances 10, no. 14 (2024): eadl1884, https://doi.org/10.1126/sciadv.adl1884.

[39]

X. Zhang, R. Xiong, S. Kang, Y. Yang, and V. V. Tsukruk, “Alternating Stacking of Nanocrystals and Nanofibers Into Ultrastrong Chiral Biocomposite Laminates,” ACS Nano 14, no. 11 (2020): 14675–14685, https://doi.org/10.1021/acsnano.0c06192.

[40]

J. Zhang, S. Qin, S. Zhang, et al., “Programmable Dynamic Information Storage Composite Film With Highly Sensitive Thermochromism and Gradually Adjustable Fluorescence,” Advanced Materials 36, no. 8 (2024): 2305872, https://doi.org/10.1002/adma.202305872.

[41]

H. Hu, S. Sekar, W. Wu, et al., “Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1d Nano-Objects,” ACS Nano 15, no. 8 (2021): 13653–13661, https://doi.org/10.1021/acsnano.1c04804.

[42]

H. M. T. Albuquerque, C. M. M. Santos, and A. M. S. Silva, “Cholesterol-Based Compounds: Recent Advances in Synthesis and Applications,” Molecules 24, no. 1 (2019): 116, https://doi.org/10.3390/molecules24010116.

[43]

M. D. Shawkey and L. D'Alba, “Interactions Between Colour-Producing Mechanisms and Their Effects on the Integumentary Colour Palette,” Philosophical Transactions of the Royal Society, B: Biological Sciences 372, no. 1724 (2017): 20160536, https://doi.org/10.1098/rstb.2016.0536.

[44]

D. E. McCoy, A. V. Shneidman, A. L. Davis, and J. Aizenberg, “Finite-Difference Time-Domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering,” Micron 151 (2021): 103160, https://doi.org/10.1016/j.micron.2021.103160.

[45]

H. Wang, L. Cheng, J. Yu, Y. Si, and B. Ding, “Biomimetic Bouligand Chiral Fibers Array Enables Strong and Superelastic Ceramic Aerogels,” Nature Communications 15, no. 1 (2024): 336, https://doi.org/10.1038/s41467-023-44657-2.

[46]

Y. Wang, P. Liu, F. Vogelbacher, and M. Li, “Bioinspired Multiscale Optical Structures Towards Efficient Light Management in Optoelectronic Devices,” Materials Today Nano 19 (2022): 100225, https://doi.org/10.1016/j.mtnano.2022.100225.

[47]

Z. Yu, Y. Ji, V. Bourg, M. Bilgen, and J. C. Meredith, “Chitin- and Cellulose-Based Sustainable Barrier Materials: A Review,” Emergent Materials 3, no. 6 (2020): 919–936, https://doi.org/10.1007/s42247-020-00147-5.

[48]

S. Pattnaik and K. Swain, “Cellulose-Based Composites and Their Biomedical Applications,” Cellulose Chemistry and Technology 56, no. 1–2 (2022): 115–122, https://doi.org/10.35812/CelluloseChemTechnol.2022.56.10.

[49]

J. D. P. de Amorim, K. C. de Souza, C. R. Duarte, et al., “Plant and Bacterial Nanocellulose: Production, Properties and Applications in Medicine, Food, Cosmetics, Electronics and Engineering. A Review,” Environmental Chemistry Letters 18, no. 3 (2020): 851–869, https://doi.org/10.1007/s10311-020-00989-9.

[50]

A. Pandey, “Pharmaceutical and Biomedical Applications of Cellulose Nanofibers: A Review,” Environmental Chemistry Letters 19, no. 3 (2021): 2043–2055, https://doi.org/10.1007/s10311-021-01182-2.

[51]

T. Aziz, A. Ullah, H. Fan, et al., “Cellulose Nanocrystals Applications in Health, Medicine and Catalysis,” Journal of Polymers and the Environment 29, no. 7 (2021): 2062–2071, https://doi.org/10.1007/s10924-021-02045-1.

[52]

Y. Li, L. Chen, Y. Liu, Y. Zhang, Y. Liang, and Y. Mei, “Anti-Inflammatory Effects in a Mouse Osteoarthritis Model of a Mixture of Glucosamine and Chitooligosaccharides Produced by Bi-Enzyme Single-Step Hydrolysis,” Scientific Reports 8 (2018): 5624, https://doi.org/10.1038/s41598-018-24050-6.

[53]

M. Xiao, C. Zhang, H. Duan, et al., “Cross-Feeding of Bifidobacteria Promotes Intestinal Homeostasis: A Lifelong Perspective on the Host Health,” NPJ Biofilms and Microbiomes 10, no. 1 (2024): 47, https://doi.org/10.1038/s41522-024-00524-6.

[54]

A. R. Shikhman, D. C. Brinson, J. Valbracht, and M. K. Lotz, “Differential Metabolic Effects of Glucosamine and N-Acetylglucosamine in Human Articular Chondrocytes,” Osteoarthritis and Cartilage 17, no. 8 (2009): 1022–1028, https://doi.org/10.1016/j.joca.2009.03.004.

[55]

M. Ul-Islam, K. F. Alabbosh, S. Manan, S. Khan, F. Ahmad, and M. W. Ullah, “Chitosan-Based Nanostructured Biomaterials: Synthesis, Properties, and Biomedical Applications,” Advanced Industrial and Engineering Polymer Research 7, no. 1 (2024): 79–99, https://doi.org/10.1016/j.aiepr.2023.07.002.

[56]

B. Sarker, J. Hum, S. N. Nazhat, and A. R. Boccaccini, “Combining Collagen and Bioactive Glasses for Bone Tissue Engineering: A Review,” Advanced Healthcare Materials 4, no. 2 (2015): 176–194, https://doi.org/10.1002/adhm.201400302.

[57]

L. Yu and M. Wei, “Biomineralization of Collagen-Based Materials for Hard Tissue Repair,” International Journal of Molecular Sciences 22, no. 2 (2021): 944, https://doi.org/10.3390/ijms22020944.

[58]

M. Robin, E. Mouloungui, G. Castillo Dali, et al., “Mineralized Collagen Plywood Contributes to Bone Autograft Performance,” Nature 636, no. 8041 (2024): 100–107, https://doi.org/10.1038/s41586-024-08208-z.

[59]

S. Matsumura, S. Kajiyama, T. Nishimura, and T. Kato, “Formation of Helically Structured Chitin/CaCO3 Hybrids Through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles,” Small 11, no. 38 (2015): 5127–5133, https://doi.org/10.1002/smll.201501083.

[60]

P. X. Wang, W. Y. Hamad, and M. J. MacLachlan, “Structure and Transformation of Tactoids in Cellulose Nanocrystal Suspensions,” Nature Communications 7, no. 1 (2016): 11515, https://doi.org/10.1038/ncomms11515.

[61]

P. Liu, J. Wang, H. Qi, et al., “Biomimetic Confined Self-Assembly of Chitin Nanocrystals,” Nano Today 43 (2022): 101420, https://doi.org/10.1016/j.nantod.2022.101420.

[62]

J. Qin, Z. Wang, J. Hu, et al., “Distinct Liquid Crystal Self-Assembly Behavior of Cellulose Nanocrystals Functionalized With Ionic Liquids,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects 632 (2022): 127790, https://doi.org/10.1016/j.colsurfa.2021.127790.

[63]

C. Schütz, M. Agthe, A. B. Fall, et al., “Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-Ray Scattering and Laser Diffraction,” Langmuir 31, no. 23 (2015): 6507–6513, https://doi.org/10.1021/acs.langmuir.5b00924.

[64]

A. G. Dumanli, G. Kamita, J. Landman, et al., “Controlled, Bio-Inspired Self-Assembly of Cellulose-Based Chiral Reflectors,” Advanced Optical Materials 2, no. 7 (2014): 646–650, https://doi.org/10.1002/adom.201400112.

[65]

S. M. Chen, S. M. Wen, S. C. Zhang, C. X. Wang, and S. H. Yu, “Biological and Bioinspired Bouligand Structural Materials: Recent Advances and Perspectives,” Matter 7, no. 2 (2024): 378–407, https://doi.org/10.1016/j.matt.2023.11.013.

[66]

C. Zhao, P. Zhang, J. Zhou, et al., “Layered Nanocomposites by Shear-Flow-Induced Alignment of Nanosheets,” Nature 580, no. 7802 (2020): 210–215, https://doi.org/10.1038/s41586-020-2161-8.

[67]

H. Zhao, S. Liu, Y. Wei, et al., “Multiscale Engineered Artificial Tooth Enamel,” Science 375, no. 6580 (2022): 551–556, https://doi.org/10.1126/science.abj3343.

[68]

B. Wang and A. Walther, “Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites With Tailored Periodicity and Layered Cuticular Structure,” ACS Nano 9, no. 11 (2015): 10637–10646, https://doi.org/10.1021/acsnano.5b05074.

[69]

M. K. Khan, M. Giese, M. Yu, J. A. Kelly, W. Y. Hamad, and M. J. MacLachlan, “Flexible Mesoporous Photonic Resins With Tunable Chiral Nematic Structures,” Angewandte Chemie International Edition 52, no. 34 (2013): 8921–8924, https://doi.org/10.1002/anie.201303829.

[70]

J. Q. I. Chua, T. E. K. Christensen, J. Palle, et al., “Biomineralization of Mantis Shrimp Dactyl Club Following Molting: Apatite Formation and Brominated Organic Components,” Acta Biomaterialia 170 (2023): 479–495, https://doi.org/10.1016/j.actbio.2023.08.054.

[71]

L. Gower and J. Elias, “Colloid Assembly and Transformation (CAT): The Relationship of PILP to Biomineralization,” Journal of Structural Biology: X 6 (2022): 100059, https://doi.org/10.1016/j.yjsbx.2021.100059.

[72]

N. Saxena, M. A. Cremer, E. S. Dolling, et al., “Influence of Fluoride on the Mineralization of Collagen via the Polymer-Induced Liquid-Precursor (PILP) Process,” Dental Materials 34, no. 9 (2018): 1378–1390, https://doi.org/10.1016/j.dental.2018.06.020.

[73]

L. Tang, L. Zhu, Y. Liu, Y. Zhang, B. Li, and M. Wang, “Crosslinking Improve Demineralized Dentin Performance and Synergistically Promote Biomimetic Mineralization by CaP_PILP,” ACS Omega 8, no. 16 (2023): 14410–14419, https://doi.org/10.1021/acsomega.2c07825.

[74]

T. Thula-Mata, A. Burwell, L. B. Gower, S. Habelizt, and G. Marshall, “Remineralization of Artificial Dentin Lesions via the Polymer-Induced Liquid-Precursor (PILP) Process,” MRS Proceedings 1355 (2011): mrss11-1355-jj08-01, https://doi.org/10.1557/opl.2011.1114.

[75]

Z. Xu, C. Yang, F. Wu, et al., “Triple-Gene Deletion for Osteocalcin Significantly Impairs the Alignment of Hydroxyapatite Crystals and Collagen in Mice,” Frontiers in Physiology 14 (2023): 1136561, https://doi.org/10.3389/fphys.2023.1136561.

[76]

S. Suzuki, N. Haruyama, F. Nishimura, and A. B. Kulkarni, “Dentin Sialophosphoprotein and Dentin Matrix Protein-1: Two Highly Phosphorylated Proteins in Mineralized Tissues,” Archives of Oral Biology 57, no. 9 (2012): 1165–1175, https://doi.org/10.1016/j.archoralbio.2012.03.005.

[77]

K. M. Zurick, C. Qin, and M. T. Bernards, “Mineralization Induction Effects of Osteopontin, Bone Sialoprotein, and Dentin Phosphoprotein on a Biomimetic Collagen Substrate,” Journal of Biomedical Materials Research. Part A 101A, no. 6 (2013): 1571–1581, https://doi.org/10.1002/jbm.a.34462.

[78]

K. J. Cross, N. L. Huq, J. E. Palamara, J. W. Perich, and E. C. Reynolds, “Physicochemical Characterization of Casein Phosphopeptide-Amorphous Calcium Phosphate Nanocomplexes,” Journal of Biological Chemistry 280, no. 15 (2005): 15362–15369, https://doi.org/10.1074/jbc.M413504200.

[79]

M. Tenenbaum, B. Deracinois, C. Dugardin, et al., “Identification, Production and Bioactivity of Casein Phosphopeptides–A Review,” Food Research International 157 (2022): 111360, https://doi.org/10.1016/j.foodres.2022.111360.

[80]

Y. Qi, Z. Ye, A. Fok, et al., “Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen,” ACS Biomaterials Science & Engineering 4, no. 8 (2018): 2758–2766, https://doi.org/10.1021/acsbiomaterials.8b00512.

[81]

D. E. Rodriguez, T. Thula-Mata, E. J. Toro, et al., “Multifunctional Role of Osteopontin in Directing Intrafibrillar Mineralization of Collagen and Activation of Osteoclasts,” Acta Biomaterialia 10, no. 1 (2014): 494–507, https://doi.org/10.1016/j.actbio.2013.10.010.

[82]

X. Gao, Z. Wang, H. Yang, and C. Huang, “Rapid Intrafibrillar Mineralization Strategy Enhances Adhesive-Dentin Interface,” Journal of Dental Research 103, no. 1 (2024): 42–50, https://doi.org/10.1177/00220345231205492.

[83]

Y. Yu, M. Shen, Q. Song, and J. Xie, “Biological Activities and Pharmaceutical Applications of Polysaccharide From Natural Resources: A Review,” Carbohydrate Polymers 183 (2018): 91–101, https://doi.org/10.1016/j.carbpol.2017.12.009.

[84]

Y. Jiang, S. Tan, J. Hu, et al., “Amorphous Calcium Magnesium Phosphate Nanocomposites With Superior Osteogenic Activity for Bone Regeneration,” Regenerative Biomaterials 8, no. 6 (2021): rbab068, https://doi.org/10.1093/rb/rbab068.

[85]

C. Bussola Tovani, A. Gloter, T. Azaïs, M. Selmane, A. P. Ramos, and N. Nassif, “Formation of Stable Strontium-Rich Amorphous Calcium Phosphate: Possible Effects on Bone Mineral,” Acta Biomaterialia 92 (2019): 315–324, https://doi.org/10.1016/j.actbio.2019.05.036.

[86]

C. Lei, K. Wang, Y. Ma, et al., “Biomimetic Self-Maturation Mineralization System for Enamel Repair,” Advanced Materials 36, no. 16 (2024): 2311659, https://doi.org/10.1002/adma.202311659.

[87]

R. Xiong, W. Wu, C. Lu, and H. Cölfen, “Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials,” Advanced Materials 34, no. 51 (2022): 2206509, https://doi.org/10.1002/adma.202206509.

[88]

W. Chen, P. Zhang, S. Yu, et al., “Nacre-Inspired Underwater Superoleophobic Films With High Transparency and Mechanical Robustness,” Nature Protocols 17, no. 11 (2022): 2647–2667, https://doi.org/10.1038/s41596-022-00725-3.

[89]

A. Xin, Y. Su, S. Feng, et al., “Growing Living Composites With Ordered Microstructures and Exceptional Mechanical Properties,” Advanced Materials 33, no. 13 (2021): 2006946, https://doi.org/10.1002/adma.202006946.

[90]

S. M. Chen, H. L. Gao, Y. B. Zhu, et al., “Biomimetic Twisted Plywood Structural Materials,” National Science Review 5, no. 5 (2018): 703–714, https://doi.org/10.1093/nsr/nwy080.

[91]

S. M. Chen, K. Wu, H. L. Gao, et al., “Biomimetic Discontinuous Bouligand Structural Design Enables High-Performance Nanocomposites,” Matter 5, no. 5 (2022): 1563–1577, https://doi.org/10.1016/j.matt.2022.02.023.

[92]

Y. Chen, B. Dang, J. Fu, et al., “Bioinspired Construction of Micronano Lignocellulose Into an Impact Resistance “Wooden Armor” With Bouligand Structure,” ACS Nano 16, no. 5 (2022): 7525–7534, https://doi.org/10.1021/acsnano.1c10725.

[93]

R. Chen, J. Liu, C. Yang, et al., “Transparent Impact-Resistant Composite Films With Bioinspired Hierarchical Structure,” ACS Applied Materials & Interfaces 11, no. 26 (2019): 23616–23622, https://doi.org/10.1021/acsami.9b06500.

[94]

S. Yin, H. Chen, R. Yang, et al., “Tough Nature-Inspired Helicoidal Composites With Printing-Induced Voids,” Cell Reports Physical Science 1, no. 7 (2020): 100109, https://doi.org/10.1016/j.xcrp.2020.100109.

[95]

V. Nguyen-Van, J. Liu, S. Li, G. Zhang, H. Nguyen-Xuan, and P. Tran, “Modelling of 3D-Printed Bio-Inspired Bouligand Cementitious Structures Reinforced With Steel Fibres,” Engineering Structures 274 (2023): 115123, https://doi.org/10.1016/j.engstruct.2022.115123.

[96]

Y. Yang, Z. Chen, X. Song, et al., “Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3d Printing,” Advanced Materials 29, no. 11 (2017): 1605750, https://doi.org/10.1002/adma.201605750.

[97]

J. Ni, S. Lin, Z. Qin, et al., “Strong Fatigue-Resistant Nanofibrous Hydrogels Inspired by Lobster Underbelly,” Matter 4, no. 6 (2021): 1919–1934, https://doi.org/10.1016/j.matt.2021.03.023.

[98]

W. E. Teo and S. Ramakrishna, “A Review on Electrospinning Design and Nanofibre Assemblies,” Nanotechnology 17, no. 14 (2006): R89–R106, https://doi.org/10.1088/0957-4484/17/14/R01.

[99]

C. L. Zhang and S. H. Yu, “Nanoparticles Meet Electrospinning: Recent Advances and Future Prospects,” Chemical Society Reviews 43, no. 13 (2014): 4423–4448, https://doi.org/10.1039/c3cs60426h.

[100]

S. Gantenbein, K. Masania, W. Woigk, J. P. W. Sesseg, T. A. Tervoort, and A. R. Studart, “Three-Dimensional Printing of Hierarchical Liquid-Crystal-Polymer Structures,” Nature 561, no. 7722 (2018): 226–230, https://doi.org/10.1038/s41586-018-0474-7.

[101]

J. Liu, S. Li, K. Fox, and P. Tran, “3D Concrete Printing of Bioinspired Bouligand Structure: A Study on Impact Resistance,” Additive Manufacturing 50 (2022): 102544, https://doi.org/10.1016/j.addma.2021.102544.

[102]

S. M. Wen, S. M. Chen, W. Gao, et al., “Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic-Polymer Composites,” Advanced Materials 35, no. 21 (2023): 2211175, https://doi.org/10.1002/adma.202211175.

[103]

P. Li, Y. Liu, S. Shi, et al., “Highly Crystalline Graphene Fibers With Superior Strength and Conductivities by Plasticization Spinning,” Advanced Functional Materials 30, no. 52 (2020): 2006584, https://doi.org/10.1002/adfm.202006584.

[104]

H. Le Ferrand, F. Bouville, T. P. Niebel, and A. R. Studart, “Addendum: Magnetically Assisted Slip Casting of Bioinspired Heterogeneous Composites,” Nature Materials 16, no. 12 (2017): 1272–1273, https://doi.org/10.1038/nmat4983.

[105]

Y. Ma, Q. Wu, L. Duanmu, et al., “Bioinspired Composites Reinforced With Ordered Steel Fibers Produced via a Magnetically Assisted 3D Printing Process,” Journal of Materials Science 55, no. 32 (2020): 15510–15522, https://doi.org/10.1007/s10853-020-05092-6.

[106]

R. M. Erb, R. Libanori, N. Rothfuchs, and A. R. Studart, “Composites Reinforced in Three Dimensions by Using Low Magnetic Fields,” Science 335, no. 6065 (2012): 199–204, https://doi.org/10.1126/science.1210822.

[107]

D. W. Green, B. Ben-Nissan, K. S. Yoon, B. Milthorpe, and H. S. Jung, “Natural and Synthetic Coral Biomineralization for Human Bone Revitalization,” Trends in Biotechnology 35, no. 1 (2017): 43–54, https://doi.org/10.1016/j.tibtech.2016.10.003.

[108]

X. Zhou, Y. Qian, L. Chen, et al., “Flowerbed-Inspired Biomimetic Scaffold With Rapid Internal Tissue Infiltration and Vascularization Capacity for Bone Repair,” ACS Nano 17, no. 5 (2023): 5140–5156, https://doi.org/10.1021/acsnano.3c00598.

[109]

M. A. Fernandez-Yague, S. A. Abbah, L. McNamara, D. I. Zeugolis, A. Pandit, and M. J. Biggs, “Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies,” Advanced Drug Delivery Reviews 84 (2015): 1–29, https://doi.org/10.1016/j.addr.2014.09.005.

[110]

Y. Zhao, W. Sun, X. Wu, et al., “Janus Membrane With Intrafibrillarly Strontium-Apatite-Mineralized Collagen for Guided Bone Regeneration,” ACS Nano 18, no. 9 (2024): 7204–7222, https://doi.org/10.1021/acsnano.3c12403.

[111]

X. Wu, W. Peng, G. Liu, et al., “Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration,” Advanced Healthcare Materials 12, no. 12 (2023): 2202611, https://doi.org/10.1002/adhm.202202611.

[112]

D. Qin, N. Wang, X. G. You, A. D. Zhang, X. G. Chen, and Y. Liu, “Collagen-Based Biocomposites Inspired by Bone Hierarchical Structures for Advanced Bone Regeneration: Ongoing Research and Perspectives,” Biomaterials Science 10, no. 2 (2022): 318–353, https://doi.org/10.1039/d1bm01294k.

[113]

S. Weiner, T. Arad, I. Sabanay, and W. Traub, “Rotated Plywood Structure of Primary Lamellar Bone in the Rat: Orientations of the Collagen Fibril Arrays,” Bone 20, no. 6 (1997): 509–514, https://doi.org/10.1016/S8756-3282(97)00053-7.

[114]

K. Liu, L. Li, J. Chen, et al., “Bone ECM-Like 3D Printing Scaffold With Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration,” ACS Nano 16, no. 12 (2022): 21020–21035, https://doi.org/10.1021/acsnano.2c08699.

[115]

L. Li, K. Liu, J. Chen, et al., “Bone ECM-Inspired Biomineralization Chitin Whisker Liquid Crystal Hydrogels for Bone Regeneration,” International Journal of Biological Macromolecules 231 (2023): 123335, https://doi.org/10.1016/j.ijbiomac.2023.123335.

[116]

F. Fendi, B. Abdullah, S. Suryani, A. N. Usman, and D. Tahir, “Development and Application of Hydroxyapatite-Based Scaffolds for Bone Tissue Regeneration: A Systematic Literature Review,” Bone 183 (2024): 117075, https://doi.org/10.1016/j.bone.2024.117075.

[117]

S. N. Almohammed, B. Alshorman, and L. A. Abu-Naba'a, “Mechanical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative In Vitro Study,” Ceramics 6, no. 2 (2023): 1031–1049, https://doi.org/10.3390/ceramics6020061.

[118]

L. Vaiani, A. Boccaccio, A. E. Uva, et al., “Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes,” Journal of Functional Biomaterials 14, no. 3 (2023): 146, https://doi.org/10.3390/jfb14030146.

[119]

A. Muhetaer, C. Tang, A. Anniwaer, H. Yang, and C. Huang, “Advances in Ceramics for Tooth Repair: From Bench to Chairside,” Journal of Dentistry 146 (2024): 105053, https://doi.org/10.1016/j.jdent.2024.105053.

[120]

M. S. Zafar, F. Amin, M. A. Fareed, et al., “Biomimetic Aspects of Restorative Dentistry Biomaterials,” Biomimetics 5, no. 3 (2020): 34, https://doi.org/10.3390/biomimetics5030034.

[121]

V. Imbeni, J. J. Kruzic, G. W. Marshall, S. J. Marshall, and R. O. Ritchie, “The Dentin-Enamel Junction and the Fracture of Human Teeth,” Nature Materials 4, no. 3 (2005): 229–232, https://doi.org/10.1038/nmat1323.

[122]

I. Denry and J. R. Kelly, “Emerging Ceramic-Based Materials for Dentistry,” Journal of Dental Research 93, no. 12 (2014): 1235–1242, https://doi.org/10.1177/0022034514553627.

[123]

S. Seyedkavoosi and I. Sevostianov, “Multiscale Micromechanical Modeling of the Elastic Properties of Dentin,” Journal of the Mechanical Behavior of Biomedical Materials 100 (2019): 103397, https://doi.org/10.1016/j.jmbbm.2019.103397.

[124]

L. H. He and M. V. Swain, “Understanding the Mechanical Behaviour of Human Enamel From Its Structural and Compositional Characteristics,” Journal of the Mechanical Behavior of Biomedical Materials 1, no. 1 (2008): 18–29, https://doi.org/10.1016/j.jmbbm.2007.05.001.

[125]

L. Hoffmann, M. Feraric, E. Hoster, F. Litzenburger, and K. H. Kunzelmann, “Investigations of the Optical Properties of Enamel and Dentin for Early Caries Detection,” Clinical Oral Investigations 25, no. 3 (2021): 1281–1289, https://doi.org/10.1007/s00784-020-03434-x.

[126]

M. Ceddia, L. Lamberti, and B. Trentadue, “FEA Comparison of the Mechanical Behavior of Three Dental Crown Materials: Enamel, Ceramic, and Zirconia,” Materials 17, no. 3 (2024): 673, https://doi.org/10.3390/ma17030673.

[127]

A. Haută, R. A. Iacobescu, M. Corlade-Andrei, P. L. Nedelea, and C. D. Cimpoeșu, “Translating Training to Medical Practice in Trauma Care, a Literature Review,” European Journal of Trauma and Emergency Surgery 50, no. 5 (2024): 2017–2028, https://doi.org/10.1007/s00068-024-02548-1.

[128]

L. Koizia, R. Kings, A. Koizia, et al., “Major Trauma in the Elderly: Frailty Decline and Patient Experience After Injury,” Trauma 21, no. 1 (2019): 21–26, https://doi.org/10.1177/1460408618783221.

[129]

P. Zioupos, H. O. K. Kirchner, and H. Peterlik, “Ageing Bone Fractures: The Case of a Ductile to Brittle Transition That Shifts With Age,” Bone 131 (2020): 115176, https://doi.org/10.1016/j.bone.2019.115176.

[130]

M. K. Islam, P. J. Hazell, J. P. Escobedo, and H. Wang, “Biomimetic Armour Design Strategies for Additive Manufacturing: A Review,” Materials & Design 205 (2021): 109730, https://doi.org/10.1016/j.matdes.2021.109730.

[131]

M. A. Abtew, F. Boussu, and P. Bruniaux, “Dynamic Impact Protective Body Armour: A Comprehensive Appraisal on Panel Engineering Design and Its Prospective Materials,” Defence Technology 17, no. 6 (2021): 2027–2049, https://doi.org/10.1016/j.dt.2021.03.016.

[132]

K. A. Alberti, J. Y. Sun, W. R. Illeperuma, Z. Suo, and Q. Xu, “Laminar Tendon Composites With Enhanced Mechanical Properties,” Journal of Materials Science 50, no. 6 (2015): 2616–2625, https://doi.org/10.1007/s10853-015-8842-2.

[133]

V. Naresh and N. Lee, “A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors,” Sensors 21, no. 4 (2021): 1109, https://doi.org/10.3390/s21041109.

[134]

B. Gollapelli, A. K. Tatipamula, S. Dewanjee, R. S. Pathinti, and J. Vallamkondu, “Detection of Bile Acids Using Optical Biosensors Based on Cholesteric Liquid Crystal Droplets,” Journal of Materials Chemistry C 9, no. 39 (2021): 13991–14002, https://doi.org/10.1039/d1tc02801d.

[135]

Y. C. Hsiao, Y. C. Sung, M. J. Lee, and W. Lee, “Highly Sensitive Color-Indicating and Quantitative Biosensor Based on Cholesteric Liquid Crystal,” Biomedical Optics Express 6, no. 12 (2015): 5033–5038, https://doi.org/10.1364/BOE.6.005033.

[136]

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(Ethylene Glycol) Composite Films With Uniform and Tunable Structural Color,” Advanced Materials 29, no. 28 (2017): 1701323, https://doi.org/10.1002/adma.201701323.

[137]

M. Giese, M. K. Khan, W. Y. Hamad, and M. J. MacLachlan, “Imprinting of Photonic Patterns With Thermosetting Amino- Formaldehyde-Cellulose Composites,” ACS Macro Letters 2, no. 9 (2013 September 17): 818–821, https://doi.org/10.1021/mz4003722.

[138]

O. Kose, A. Tran, L. Lewis, W. Y. Hamad, and M. J. MacLachlan, “Unwinding a Spiral of Cellulose Nanocrystals for Stimuli-Responsive Stretchable Optics,” Nature Communications 10, no. 1 (2019): 510, https://doi.org/10.1038/s41467-019-08351-6.

[139]

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection With Cholesteric Liquid Crystals—Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors 10, no. 5 (2010): 4887–4897, https://doi.org/10.3390/s100504887.

[140]

Y. P. Zhang, V. P. Chodavarapu, A. G. Kirk, and M. P. Andrews, “Structured Color Humidity Indicator From Reversible Pitch Tuning in Self-Assembled Nanocrystalline Cellulose Films,” Sensors and Actuators B: Chemical 176 (2013): 692–697, https://doi.org/10.1016/j.snb.2012.09.100.

[141]

S. Dai, N. Prempeh, D. Liu, Y. Fan, M. Gu, and Y. Chang, “Cholesteric Film of Cu(II)-Doped Cellulose Nanocrystals for Colorimetric Sensing of Ammonia Gas,” Carbohydrate Polymers 174 (2017): 531–539, https://doi.org/10.1016/j.carbpol.2017.06.098.

[142]

D. X. Oh, Y. J. Cha, H. L. Nguyen, et al., “Chiral Nematic Self-Assembly of Minimally Surface Damaged Chitin Nanofibrils and Its Load Bearing Functions,” Scientific Reports 6 (2016): 23245, https://doi.org/10.1038/srep23245.

[143]

A. Sakkas, F. Wilde, M. Heufelder, K. Winter, and A. Schramm, “Autogenous Bone Grafts in Oral Implantology-Is It Still a “Gold Standard”? A Consecutive Review of 279 Patients With 456 Clinical Procedures,” International Journal of Implant Dentistry 3, no. 1 (2017): 23, https://doi.org/10.1186/s40729-017-0084-4.

[144]

F. Liu, Y. Wu, M. Long, et al., “Activating Adsorption Sites of Waste Crayfish Shells via Chemical Decalcification for Efficient Capturing of Nanoplastics,” ACS Nano 18, no. 24 (2024): 15779–15789, https://doi.org/10.1021/acsnano.4c02511.

[145]

F. Han, T. Li, M. Li, et al., “Nano-Calcium Silicate Mineralized Fish Scale Scaffolds for Enhancing Tendon-Bone Healing,” Bioactive Materials 20 (2023): 29–40, https://doi.org/10.1016/j.bioactmat.2022.04.030.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/