Efficient Inverted Perovskite Solar Cells Enabled by Sequential Passivation Using Two-Dimensional Perovskites

Bingcan Ke , Jing Li , Zewei Zhu , Siqi Zhang , Ruixuan Jiang , Chengkai Jin , Chang Hu , Qi Zhang , Jie Su , Sai Bai , Fuzhi Huang , Yi-Bing Cheng , Tongle Bu

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) : 620 -629.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) :620 -629. DOI: 10.1002/idm2.12256
RESEARCH ARTICLE

Efficient Inverted Perovskite Solar Cells Enabled by Sequential Passivation Using Two-Dimensional Perovskites

Author information +
History +
PDF

Abstract

Refining the process in which two-dimensional (2D) perovskites passivate three-dimensional (3D) perovskites is vital for improving the performance of perovskite solar cells (PSCs), yet is frequently overlooked. Herein, a novel sequential passivation process that initially employs phenethylamine iodide (PEAI) on the 3D perovskite surface, followed by treatment with 4-trifluoromethylphenylethylamine iodide (CF3PEAI) is presented. A comprehensive comparison of the intrinsic molecular structures and their impact on the perovskites reveals that the small-sized, low-polarized PEA molecule induces minimal lattice strain and a negative shift of the vacuum energy level of perovskite surface, whereas the large-sized, high-polarized CF3PEA molecule leads to larger lattice strain and a positive shift of the vacuum energy level. By leveraging the opposing properties of these molecules through our tailored sequential passivation strategy, optimal passivation effects and efficient interface charge transfer are obtained, outperforming the posttreatment with mixed ligands and greatly surpassing posttreatment with a single ligand. Consequently, a champion efficiency of 26.27% is achieved for the inverted PSCs, along with outstanding operational stability featuring a T80 lifetime exceeding 1000 h under continuous light illumination at the maximum power point tracking.

Keywords

energy level alignment / perovskite solar cells / sequential passivation / stability / two-dimensional perovskites

Cite this article

Download citation ▾
Bingcan Ke, Jing Li, Zewei Zhu, Siqi Zhang, Ruixuan Jiang, Chengkai Jin, Chang Hu, Qi Zhang, Jie Su, Sai Bai, Fuzhi Huang, Yi-Bing Cheng, Tongle Bu. Efficient Inverted Perovskite Solar Cells Enabled by Sequential Passivation Using Two-Dimensional Perovskites. Interdisciplinary Materials, 2025, 4(4): 620-629 DOI:10.1002/idm2.12256

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Jiang, J. Tong, Y. Xian, et al., “Surface Reaction for Efficient and Stable Inverted Perovskite Solar Cells,” Nature 611 (2022): 278–283.

[2]

J. Li, C. Jin, R. Jiang, et al., “Homogeneous Coverage of the Low-Dimensional Perovskite Passivation Layer for Formamidinium–Caesium Perovskite Solar Modules,” Nature Energy 9 (2024): 1540–1550.

[3]

Y. Zhang, L. Xu, J. Sun, et al., “24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Charge-Carrier Transport Balance,” Advanced Energy Materials 12 (2022): 2201269.

[4]

Y. Zheng, Y. Li, R. Zhuang, et al., “Towards 26% Efficiency in Inverted Perovskite Solar Cellsviainterfacial Flipped Band Bending and Suppressed Deep-Level Traps,” Energy & Environmental Science 17 (2024): 1153–1162.

[5]

Z. Qu, Y. Zhao, F. Ma, et al., “Enhanced Charge Carrier Transport and Defects Mitigation of Passivation Layer for Efficient Perovskite Solar Cells,” Nature Communications 15 (2024): 8620.

[6]

Q. Li, H. Liu, C.-H. Hou, et al., “Harmonizing the Bilateral Bond Strength of the Interfacial Molecule in Perovskite Solar Cells,” Nature Energy 9 (2024): 1506–1516.

[7]

K. Yoshikawa, H. Kawasaki, W. Yoshida, et al., “Silicon Heterojunction Solar Cell With Interdigitated Back Contacts for a Photoconversion Efficiency Over 26,” Nature Energy 2 (2017): 17032.

[8]

P. Jackson, D. Hariskos, R. Wuerz, et al., “Properties of Cu(In, Ga)Se2 solar Cells With New Record Efficiencies Up to 21.7,” Physica Status Solidi (RRL) - Rapid Research Letters 9 (2015): 28–31.

[9]

J. Jeong, M. Kim, J. Seo, et al., “Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells,” Nature 592 (2021): 381–385.

[10]

G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang, and G. Xing, “Surface Passivation Using 2D Perovskites Toward Efficient and Stable Perovskite Solar Cells,” Advanced Materials 34 (2022): 2105635.

[11]

K. H. Girish, “Advances in Surface Passivation of Perovskites Using Organic Halide Salts for Efficient and Stable Solar Cells,” Surfaces and Interfaces 26 (2021): 101420.

[12]

K. Wang, J. Liu, J. Yin, et al., “Defect Passivation in Perovskite Solar Cells by Cyano-Based π-Conjugated Molecules for Improved Performance and Stability,” Advanced Functional Materials 30 (2020): 2002861.

[13]

T.-H. Han, J.-W. Lee, C. Choi, et al., “Perovskite-Polymer Composite Cross-Linker Approach for Highly-Stable and Efficient Perovskite Solar Cells,” Nature Communications 10 (2019): 520.

[14]

Y. Q. Zhang, Y. Z. Zhang, B. F. Niu, et al., “Construction of 2D/3D/2D-Structured Perovskite for High-Performance and Stable Solar Cells,” Advanced Functional Materials 33 (2023): 2307949.

[15]

L. Liu, J. Tang, S. S. Li, et al., “Multi-Site Intermolecular Interaction for In Situ Formation of Vertically Orientated 2D Passivation Layer in Highly Efficient Perovskite Solar Cells,” Advanced Functional Materials 33 (2023): 2303038.

[16]

J. W. Lee, Z. Dai, T. H. Han, et al., “2D Perovskite Stabilized Phase-Pure Formamidinium Perovskite Solar Cells,” Nature Communications 9 (2018): 3021.

[17]

R. Lin, J. Xu, M. Wei, et al., “All-Perovskite Tandem Solar Cells With Improved Grain Surface Passivation,” Nature 603 (2022): 73–78.

[18]

P. Chen, Y. Bai, S. C. Wang, M. Q. Lyu, J. H. Yun, and L. Z. Wang. “In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells,” Advanced Functional Materials 28 (2018): 1706923.

[19]

R. Chen, J. Wang, Z. Liu, et al., “Reduction of Bulk and Surface Defects in Inverted Methylammonium- and Bromide-Free Formamidinium Perovskite Solar Cells,” Nature Energy 8 (2023): 839–849.

[20]

Y. Ma, F. Li, J. Gong, et al., “Bi-Molecular Kinetic Competition for Surface Passivation in High-Performance Perovskite Solar Cells,” Energy & Environmental Science 17 (2024): 1570–1579.

[21]

S. Xiong, F. Tian, F. Wang, et al., “Reducing Nonradiative Recombination for Highly Efficient Inverted Perovskite Solar Cells via a Synergistic Bimolecular Interface,” Nature Communications 15 (2024): 5607.

[22]

Y. Wang, R. Lin, C. Liu, et al., “Homogenized Contact in All-Perovskite Tandems Using Tailored 2D Perovskite,” Nature 635 (2024): 867–873.

[23]

J. J. Suo, B. W. Yang, E. Mosconi, et al., “Surface Reconstruction Engineering With Synergistic Effect of Mixed-Salt Passivation Treatment Toward Efficient and Stable Perovskite Solar Cells,” Advanced Functional Materials 31 (2021): 2102902.

[24]

Y. Ma, L. Zhang, Y. Xu, et al., “Internal Interactions Between Mixed Bulky Organic Cations on Passivating Defects in Perovskite Solar Cells,” ACS Applied Materials & Interfaces 14 (2022): 11200–11210.

[25]

Q. Cheng, B. Wang, G. Huang, et al., “Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells,” Angewandte Chemie International Edition 61 (2022): e202208264.

[26]

Z. Liu, H. J. Li, Z. J. Chu, et al., “Reducing Perovskite/C60 Interface Losses via Sequential Interface Engineering for Efficient Perovskite/Silicon Tandem Solar Cell,” Advanced Materials 36 (2024): 2308370.

[27]

X. Li, J. M. Hoffman, and M. G. Kanatzidis, “The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything From the Structure to Optoelectronic Device Efficiency,” Chemical Reviews 121 (2021): 2230–2291.

[28]

S. M. Park, M. Wei, J. Xu, et al., “Engineering Ligand Reactivity Enables High-Temperature Operation of Stable Perovskite Solar Cells,” Science 381 (2023): 209–215.

[29]

H. Li, T. Luo, S. Zhang, et al., “Two-Dimensional Metal-Halide Perovskite-Based Optoelectronics: Synthesis, Structure, Properties and Applications,” Energy & Environmental Materials 4 (2021): 46–64.

[30]

D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications,” Journal of the American Chemical Society 137 (2015): 7843–7850.

[31]

C. Liang, H. Gu, Y. Xia, et al., “Two-Dimensional Ruddlesden–Popper Layered Perovskite Solar Cells Based on Phase-Pure Thin Films,” Nature Energy 6 (2021): 38–45.

[32]

R. Wang, W. Feng, X. Yu, et al., “Stable Zero-Sodium-Excess Solid-State Batteries Enabled by Interphase Stratification,” eScience 4 (2024): 100308.

[33]

G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, and S. I. Seok, “Impact of Strain Relaxation on Performance of α-formamidinium Lead Iodide Perovskite Solar Cells,” Science 370 (2020): 108–112.

[34]

S. Sidhik, Y. Wang, M. De Siena, et al., “Deterministic Fabrication of 3D/2D Perovskite Bilayer Stacks for Durable and Efficient Solar Cells,” Science 377 (2022): 1425–1430.

[35]

J. Liu, C. Ai, C. Hu, B. Cheng, and J. Zhang, “Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation,” Acta Physico-Chimica Sinica 40 (2024): 2402006.

[36]

Y. Zhu, C. Li, J. Chen, et al., “Julolidine Functionalized Benzimidazoline-Doped Fullerene Derivatives for Efficient and Stable Perovskite Solar Cells,” Interdisciplinary Materials 3 (2024): 369–379.

[37]

T. Li, J. Xu, R. Lin, et al., “Inorganic Wide-Bandgap Perovskite Subcells With Dipole Bridge for All-Perovskite Tandems,” Nature Energy 8 (2023): 610–620.

[38]

Y. Peng, Y. Chen, J. Zhou, et al., “Enlarging Moment and Regulating Orientation of Buried Interfacial Dipole for Efficient Inverted Perovskite Solar Cells,” Nature Communications 16 (2025): 1252.

[39]

Q. Yang, X. Zhang, S. Wang, et al., “The Addition of Fluorine Atoms and Alkyl Chains to Aromatic Ligand Dipole for Enhancing Stability and Photoelectronic Properties of Formamidinium Perovskite Surfaces,” Applied Surface Science 659 (2024): 159925.

[40]

L. Canil, T. Cramer, B. Fraboni, et al., “Tuning Halide Perovskite Energy Levels,” Energy & Environmental Science 14 (2021): 1429–1438.

[41]

C. M. Wolff, L. Canil, C. Rehermann, et al., “Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells,” ACS Nano 14 (2020): 1445–1456.

[42]

J. Shi, M. W. Samad, F. Li, et al., “Dual-Site Molecular Dipole Enables Tunable Interfacial Field Toward Efficient and Stable Perovskite Solar Cells,” Advanced Materials 36 (2024): 2410464.

[43]

S. Lee, H. Cho, S. Kang, O. J. Oh, D. H. Kim, and J. H. Noh, “Deciphering 2D Perovskite's Role in Perovskite Solar Cellsviaintact 3D/2D Junctions,” Energy & Environmental Science 17 (2024): 6234–6244.

[44]

P. Caprioglio, M. Stolterfoht, C. M. Wolff, et al., “On the Relation Between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells,” Advanced Energy Materials 9 (2019): 1901631.

[45]

D. Glowienka and Y. Galagan, “Light Intensity Analysis of Photovoltaic Parameters for Perovskite Solar Cells,” Advanced Materials 34 (2021): 2105920.

[46]

S. Jia, J. Yang, T. Wang, et al., “In Situ Polymerization of Water-Induced 1,3-Phenylene Diisocyanate for Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells,” Interdisciplinary Materials 3 (2024): 316–325.

[47]

O. Almora, C. Aranda, E. Mas-Marzá, and G. Garcia-Belmonte, “On Mott-Schottky Analysis Interpretation of Capacitance Measurements in Organometal Perovskite Solar Cells,” Applied Physics Letters 109 (2016): 173903.

[48]

S. Zhang, T. Tian, J. Li, et al., “Surface Passivation With Tailoring Organic Potassium Salt for Efficient FAPbI3 Perovskite Solar Cells and Modules,” Advanced Functional Materials 34 (2024): 2401945.

[49]

W. Ke, G. Fang, J. Wan, et al., “Efficient Hole-Blocking Layer-Free Planar Halide Perovskite Thin-Film Solar Cells,” Nature Communications 6 (2015): 6700.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/