Ultrathin Nanocomposite Membrane With Robust Anti-Wettability for Stable Membrane Distillation

Zhongao Chen , Yongxuan Wang , Xiao Chen , Cheng Huang , Shiqing Xu , Quanwei Xu , Shuaifei Zhao , Wojciech Kujawski , Pengchao Zhang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) : 610 -619.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) :610 -619. DOI: 10.1002/idm2.12253
RESEARCH ARTICLE

Ultrathin Nanocomposite Membrane With Robust Anti-Wettability for Stable Membrane Distillation

Author information +
History +
PDF

Abstract

Hydrophobic porous membrane is the key to the desalination performance of membrane distillation (MD). However, traditional MD membranes suffer from poor hydrophobicity of pore surfaces, leading to pore wetting and causing the loss of desalination stability. In this study, we present an ultrathin polyvinylidene fluoride (PVDF) nanocomposite membrane with robust anti-wetting properties and high permeability for stable MD desalination. The improved anti-wetting properties are achieved by enhancing the hydrophobicity of membrane pore surfaces via introducing hydrophobic silica nanoparticles to build nanostructures on the pore surfaces. The hydrophobic nanostructured pore surfaces induce the formation of the nano-Cassie state upon contact with water, thereby enhancing the specific liquid entry pressure of water (LEPw) with 788% compared to commercial PVDF membranes. The resulted porous structure and 10 μm membrane thickness (i.e., 20 times thinner than commercial PVDF membranes) enable the stable desalination flux of 20.30 kg m−2 h−1 and high salt rejection of > 99.9% with 60°C seawater. Our ultrathin nanocomposite membranes provide a promising solution for long-term MD seawater desalination.

Keywords

anti-wetting / composite membrane / long-term stability / membrane distillation / seawater desalination

Cite this article

Download citation ▾
Zhongao Chen, Yongxuan Wang, Xiao Chen, Cheng Huang, Shiqing Xu, Quanwei Xu, Shuaifei Zhao, Wojciech Kujawski, Pengchao Zhang. Ultrathin Nanocomposite Membrane With Robust Anti-Wettability for Stable Membrane Distillation. Interdisciplinary Materials, 2025, 4(4): 610-619 DOI:10.1002/idm2.12253

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Deshmukh, C. Boo, V. Karanikola, et al., “Membrane Distillation at the Water-Energy Nexus: Limits, Opportunities, and Challenges,” Energy & Environmental Science 11, no. 5 (2018): 1177–1196.

[2]

M. U. Farid, J. A. Kharraz, J. Sun, et al., “Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus,” Advanced Materials 36, no. 17 (2023): 2307950.

[3]

C. C. M. Sproncken, P. Liu, J. Monney, et al., “Large-Area, Self-Healing Block Copolymer Membranes for Energy Conversion,” Nature 630, no. 8018 (2024): 866–871.

[4]

M. G. O'Connell, N. Rajendran, M. Elimelech, J. Gilron, and J. B. Dunn, “Analysis of Energy, Water, Land and Cost Implications of Zero and Minimal Liquid Discharge Desalination Technologies,” Nature Water 2, no. 11 (2024): 1116–1127.

[5]

U. Caldera and C. Breyer, “Afforesting Arid Land With Renewable Electricity and Desalination to Mitigate Climate Change,” Nature Sustainability 6, no. 5 (2023): 526–538.

[6]

J. D. Kocher and A. K. Menon, “Addressing Global Water Stress Using Desalination and Atmospheric Water Harvesting: A Thermodynamic and Technoeconomic Perspective,” Energy & Environmental Science 16, no. 11 (2023): 4983–4993.

[7]

S. Santoro, A. H. Avci, A. Politano, and E. Curcio, “The Advent of Thermoplasmonic Membrane Distillation,” Chemical Society Reviews 51, no. 14 (2022): 6087–6125.

[8]

H. Y. Zhao, W. X. Dong, Y. Deng, et al., “Biomass-Based Biomimetic-Oriented Janus Nanoarchitecture for Efficient Heavy-Metal Enrichment and Interfacial Solar Water Sanitation,” Interdisciplinary Materials 1, no. 4 (2022): 537–547.

[9]

B. Zhang, P. W. Wong, J. Guo, et al., “Transforming Ti3C2Tx Mxene's Intrinsic Hydrophilicity Into Superhydrophobicity for Efficient Photothermal Membrane Desalination,” Nature Communications 13, no. 1 (2022): 3315.

[10]

D. Lu, Z. Zhou, Z. Wang, et al., “An Ultrahigh-Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination Using Low-Grade Heat,” Advanced Materials 34, no. 11 (2022): 2109718.

[11]

S. Zhao, S. Hu, X. Zhang, et al., “Integrated Membrane System Without Adding Chemicals for Produced Water Desalination Towards Zero Liquid Discharge,” Desalination 496 (2020): 114693.

[12]

Y. Chen, S. Yang, Z. Wang, and M. Elimelech, “Transforming Membrane Distillation to a Membraneless Fabric Distillation for Desalination,” Nature Water 2, no. 1 (2024): 52–61.

[13]

Y. Hou, P. Shah, V. Constantoudis, E. Gogolides, M. Kappl, and H. J. Butt, “A Super Liquid-Repellent Hierarchical Porous Membrane for Enhanced Membrane Distillation,” Nature Communications 14, no. 1 (2023): 6886.

[14]

S. Al-Gharabli and J. Kujawa, “Molecular Activation of Fluoropolymer Membranes via Base Piranha Treatment to Enhance Transport and Mitigate Fouling—New Materials for Water Purification,” Journal of Membrane Science 624 (2021): 119105.

[15]

C. A. Robbins, Y. Yin, A. J. Hanson, J. Blotevogel, T. Borch, and T. Tong, “Mitigating Membrane Wetting in the Treatment of Unconventional Oil and Gas Wastewater by Membrane Distillation: A Comparison of Pretreatment With Omniphobic Membrane,” Journal of Membrane Science 645 (2022): 120198.

[16]

T. Gong, D. Shi, Z. Zhu, B. Liu, and S. Shao, “Polyamide Thin-Film Composite Janus Membranes Avoiding Direct Contact Between Feed Liquid and Hydrophobic Pores for Excellent Wetting Resistance in Membrane Distillation,” ACS ES&T Water 3, no. 1 (2022): 176–184.

[17]

Z. Xiong, Q. Lai, J. Lu, et al., “Silanization Enabled Superhydrophobic PTFE Membrane With Antiwetting and Antifouling Properties for Robust Membrane Distillation,” Journal of Membrane Science 674 (2023): 121546.

[18]

F. Varela-Corredor and S. Bandini, “Testing the Applicability Limits of a Membrane Distillation Process With Ceramic Hydrophobized Membranes: The Critical Wetting Temperature,” Separation and Purification Technology 250 (2020): 117205.

[19]

J. Liu, X. Li, W. Zhang, B. Li, and C. Liu, “Superhydrophobic-Slip Surface Based Heat and Mass Transfer Mechanism in Vacuum Membrane Distillation,” Journal of Membrane Science 614 (2020): 118505.

[20]

A. Samadi, T. Ni, E. Fontananova, G. Tang, H. Shon, and S. Zhao, “Engineering Antiwetting Hydrophobic Surfaces for Membrane Distillation: A Review,” Desalination 563 (2023): 116722.

[21]

J. Yu, D. Sun, D. Yue, B. Li, T. Zhu, and P. Liu, “Cumof Functionalized PVDF Membrane With Hierarchical Structure for Photothermal Vacuum Membrane Distillation,” Journal of Membrane Science 706 (2024): 122967.

[22]

J. Liu, H. Guo, Z. Sun, and B. Li, “Preparation of Photothermal Membrane for Vacuum Membrane Distillation With Excellent Anti-Fouling Ability Through Surface Spraying,” Journal of Membrane Science 634 (2021): 119434.

[23]

Y. Zhang, J. Sun, and F. Guo, “Performance Enhancement for Membrane Distillation by Introducing Insoluble Particle Fillers in the Feed,” Desalination 558 (2023): 116624.

[24]

A. Rasekh and A. Raisi, “Electrospun Nanofibrous Polyether-Block-Amide Membrane Containing Silica Nanoparticles for Water Desalination by Vacuum Membrane Distillation,” Separation and Purification Technology 275 (2021): 119149.

[25]

S. S. Ray, T. S. K. Sharma, S. Myung, W. M. Choi, and Y.-N. Kwon, “Holistic Approach for Fabrication of Superhydrophobic MXene-Based Membrane for Enhanced Membrane Distillation,” Desalination 580 (2024): 117536.

[26]

T. Verho, J. T. Korhonen, L. Sainiemi, et al., “Reversible Switching Between Superhydrophobic States on a Hierarchically Structured Surface,” Proceedings of the National Academy of Sciences 109, no. 26 (2012): 10210–10213.

[27]

L. Jiao, K. Yan, J. Wang, et al., “Low Surface Energy Nanofibrous Membrane for Enhanced Wetting Resistance in Membrane Distillation Process,” Desalination 476 (2020): 114210.

[28]

B. Sun, M. Wu, H. Zhen, et al., “Tailored PVDF Membrane With Coordinated Interfacial Nano/Micro-Structure for Enhanced Membrane Distillation,” Desalination 573 (2024): 117177.

[29]

Z. Li, M. Cao, P. Li, et al., “Surface-Embedding of Functional Micro-/Nanoparticles for Achieving Versatile Superhydrophobic Interfaces,” Matter 1, no. 3 (2019): 661–673.

[30]

H. Chang, B. Liu, Z. Zhang, et al., “A Critical Review of Membrane Wettability in Membrane Distillation From the Perspective of Interfacial Interactions,” Environmental Science & Technology 55, no. 3 (2020): 1395–1418.

[31]

W. Li, M. Chen, G. Zhang, et al., “Depositing of Pvam and Ga onto PVDF/POTS-SiO2 to Fabricate a Janus Membrane for Direct Contact Membrane Distillation (DCMD),” Desalination 582 (2024): 117661.

[32]

S. Fu, J. Sun, Z. Hu, et al, “Multi-Mechanism Collaborative Bionic Fixation Technique Between a Wide Range of Solid Interfaces,” Advanced Science 12, no. 3 (2024): 2409507.

[33]

C. Zhao, P. Zhang, J. Zhou, et al., “Layered Nanocomposites by Shear-Flow-Induced Alignment of Nanosheets,” Nature 580, no. 7802 (2020): 210–215.

[34]

P. Zhang, F. Zhang, C. Zhao, S. Wang, M. Liu, and L. Jiang, “Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films,” Angewandte Chemie International Edition 55, no. 11 (2016): 3615–3619.

[35]

J. Zhang, D. Hou, J. Wang, et al., “Bioinspired Dielectric Nanocomposites With High Charge–Discharge Efficiency Enabled by Superspreading-Induced Alignment of Nanosheets,” ACS Applied Materials & Interfaces 16, no. 11 (2024): 14162–14170.

[36]

J. Xu, L. Xia, J. Liu, et al., “Fabrication of Omniphobic PVDF Membrane With SiO2–FeOOH Hierarchical Structures for Robust Membrane Distillation,” Journal of Membrane Science 713 (2025): 123252.

[37]

M. Rezaei, D. M. Warsinger, J. H. Lienhard, V, M. C. Duke, T. Matsuura, and W. M. Samhaber, “Wetting Phenomena in Membrane Distillation: Mechanisms, Reversal, and Prevention,” Water Research 139 (2018): 329–352.

[38]

J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, “Understanding the Non-Solvent Induced Phase Separation (NIPS) Effect During the Fabrication of Microporous PVDF Membranes via Thermally Induced Phase Separation (TIPS),” Journal of Membrane Science 514 (2016): 250–263.

[39]

W. Wang, X. Du, H. Vahabi, et al., “Trade-Off in Membrane Distillation With Monolithic Omniphobic Membranes,” Nature Communications 10, no. 1 (2019): 3220.

[40]

J. Mo, J. Sha, D. Li, Z. Li, and Y. Chen, “Fluid Release Pressure for Nanochannels: The Young–Laplace Equation Using the Effective Contact Angle,” Nanoscale 11, no. 17 (2019): 8408–8415.

[41]

V. Murugesan, D. Rana, T. Matsuura, and C. Q. Lan, “Optimization of Nanocomposite Membrane for Vacuum Membrane Distillation (VMD) Using Static and Continuous Flow Cells: Effect of Nanoparticles and Film Thickness,” Separation and Purification Technology 241 (2020): 116685.

[42]

S. Al-Gharabli, Z. Flanc, K. Pianka, A. P. Terzyk, W. Kujawski, and J. Kujawa, “Porcupine Quills-Like-Structures Containing Smart PVDF/Chitosan Hybrids for Anti-Fouling Membrane Applications and Removal of Hazardous Vocs,” Chemical Engineering Journal 452 (2023): 139281.

[43]

A. Criscuoli, “Osmotic Distillation and Vacuum Membrane Distillation for Juice Concentration: A Comparison in Terms of Energy Consumption at the Permeate Side,” Separation and Purification Technology 278 (2021): 119593.

[44]

J. Wang, Y. Liu, U. Rao, et al., “Conducting Thermal Energy to the Membrane/Water Interface for the Enhanced Desalination of Hypersaline Brines Using Membrane Distillation,” Journal of Membrane Science 626 (2021): 119188.

[45]

R. Ouchn, Y. Chaouqi, S. Oukkass, et al., “Ionic Liquids and Activated Carbon: Effective Materials for the Sustainable Production of Fresh Water From Salt Effluents (Brine),” ACS Sustainable Chemistry & Engineering 12, no. 3 (2024): 1195–1206.

[46]

W. A. F. Wae AbdulKadir, A. L. Ahmad, and B. S. Ooi, “A Water-Repellent PVDF-HNT Membrane for High and Low Concentrations of Oxytetracycline Treatment via DCMD: An Experimental Investigation,” Chemical Engineering Journal 422 (2021): 129644.

[47]

M. Alqaydi, M. O. Mavukkandy, I. Mustafa, A. Alnuaimi, H. A. Arafat, and F. Almarzooqi, “Activated Carbon as a Photothermal Absorber in PVDF Membranes for Solar Driven Air-Gap Membrane Distillation,” Desalination 541 (2022): 116031.

[48]

Z.-Q. Dong, X. Ma, Z.-L. Xu, W.-T. You, and F. Li, “Superhydrophobic PVDF–PTFE Electrospun Nanofibrous Membranes for Desalination by Vacuum Membrane Distillation,” Desalination 347 (2014): 175–183.

[49]

V. Okati, A. J. Moghadam, M. Farzaneh-Gord, and M. Moein-Jahromi, “Thermo-Economical and Environmental Analyses of a Direct Contact Membrane Distillation (DCMD) Performance,” Journal of Cleaner Production 340 (2022): 130613.

[50]

D. Yue, Y. Wang, H. Zhang, et al., “A Novel Silver/Activated-Polyvinylidene Fluoride-Polydimethyl Siloxane Hydrophilic-Hydrophobic Janus Membrane for Vacuum Membrane Distillation and Its Anti-Oil-Fouling Ability,” Journal of Membrane Science 638 (2021): 119718.

[51]

Z. Cui, J. Pan, Z. Wang, M. Frappa, E. Drioli, and F. Macedonio, “Hyflon/PVDF Membranes Prepared by NIPS and TIPS: Comparison in MD Performance,” Separation and Purification Technology 247 (2020): 116992.

[52]

C. Li, W. Liu, J. Mao, L. Hu, Y. Yun, and B. Li, “Superhydrophobic PVDF Membrane Modified by Dopamine Self-Polymerized Nanoparticles for Vacuum Membrane Distillation,” Separation and Purification Technology 304 (2023): 122182.

[53]

R. Ouchn, Y. Chaouqi, S. Oukkass, et al., “Advancing Sustainable Direct Contact Membrane Distillation: Performance and Stability of Novel Polymer Inclusion Membranes,” Separation and Purification Technology 354 (2025): 129056.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/