Nature Inspires New High-Performance Metal Composites
Yanyan Liu , Zengqian Liu , Zhenyu Liu , Wenhao Zhou , Sen Yu , Bolv Xiao , Zongyi Ma , Zhefeng Zhang , Robert O. Ritchie
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 502 -507.
Nature Inspires New High-Performance Metal Composites
The intricately complex structures of natural biological materials, which endow them with exceptional properties, serve as unparalleled models and sources of inspiration for the design of synthetic materials. However, translating these structures into metallic systems poses formidable challenges due to the demanding conditions required for metal processing. This brief perspective spotlights the 3D interpenetrating-phase structures evolved in biological materials and distills key insights for bioinspired structural design in metallic materials. We highlight recent advancements in creating bioinspired metal composites, particularly through advanced processing techniques like metal melt infiltration into porous scaffolds, achieving remarkable synergies between various mechanical properties and functionalities. Additionally, AI-driven approaches show immense potential to accelerate the iterative process of optimizing structures and properties in bioinspired designs.
additive manufacturing / AI-assisted design / bioinspired materials / interpenetrating-phase structures / metal composites
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |