Nature Inspires New High-Performance Metal Composites

Yanyan Liu , Zengqian Liu , Zhenyu Liu , Wenhao Zhou , Sen Yu , Bolv Xiao , Zongyi Ma , Zhefeng Zhang , Robert O. Ritchie

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 502 -507.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 502 -507. DOI: 10.1002/idm2.12251
PERSPECTIVE

Nature Inspires New High-Performance Metal Composites

Author information +
History +
PDF

Abstract

The intricately complex structures of natural biological materials, which endow them with exceptional properties, serve as unparalleled models and sources of inspiration for the design of synthetic materials. However, translating these structures into metallic systems poses formidable challenges due to the demanding conditions required for metal processing. This brief perspective spotlights the 3D interpenetrating-phase structures evolved in biological materials and distills key insights for bioinspired structural design in metallic materials. We highlight recent advancements in creating bioinspired metal composites, particularly through advanced processing techniques like metal melt infiltration into porous scaffolds, achieving remarkable synergies between various mechanical properties and functionalities. Additionally, AI-driven approaches show immense potential to accelerate the iterative process of optimizing structures and properties in bioinspired designs.

Keywords

additive manufacturing / AI-assisted design / bioinspired materials / interpenetrating-phase structures / metal composites

Cite this article

Download citation ▾
Yanyan Liu, Zengqian Liu, Zhenyu Liu, Wenhao Zhou, Sen Yu, Bolv Xiao, Zongyi Ma, Zhefeng Zhang, Robert O. Ritchie. Nature Inspires New High-Performance Metal Composites. Interdisciplinary Materials, 2025, 4(3): 502-507 DOI:10.1002/idm2.12251

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. R. Clarke, “Interpenetrating Phase Composites,” Journal of the American Ceramic Society 75, no. 4 (1992): 739-758.

[2]

L. D. Wegner and L. J. Gibson, “The Mechanical Behaviour of Interpenetrating Phase Composites - I: Modelling,” International Journal of Mechanical Sciences 42, no. 5 (2000): 925-942.

[3]

D. Yavas, Z. Zhang, Q. Liu, and D. Wu, “Fracture Behavior of 3D Printed Carbon Fiber-Reinforced Polymer Composites,” Composites Science and Technology 208 (2021): 108741.

[4]

Y. Wan, J. Yao, H. Li, et al., “Experimental Studies of Low-Velocity Impact Behavior on Hybrid Metal Wire Net/Woven Carbon-Fiber Reinforced Composite Laminates,” Composites Communications 32 (2022): 101185.

[5]

J. Ren, Q. Liu, Y. Pei, et al., “Bioinspired Energy Storage and Harvesting Devices,” Advanced Materials Technologies 6 (2021): 2001301.

[6]

Q. Zhao, Y. Wang, H. Cui, and X. Du, “Bio-Inspired Sensing and Actuating Materials,” Journal of Materials Chemistry C 7 (2019): 6493-6511.

[7]

M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, “Biological Materials: Structure and Mechanical Properties,” Progress in Materials Science 53, no. 1 (2008): 1-206.

[8]

J. Sun and B. Bhushan, “Hierarchical Structure and Mechanical Properties of Nacre: A Review,” RSC Advances 2 (2012): 7617-7632.

[9]

X. Su, S. Kamat, and A. H. Heuer, “The Structure of Sea Urchin Pines, Large Biogenic Single Crystals of Calcite,” Journal of Materials Science 35 (2000): 5545-5551.

[10]

P.-Y. Chen, D. Toroian, P. A. Price, and J. McKittrick, “Minerals Form a Continuum Phase in Mature Cancellous Bone,” Calcified Tissue International 88 (2011): 351-361.

[11]

Z. Q. Liu, D. Jiao, M. A. Meyers, and Z. F. Zhang, “Structure and Mechanical Properties of Naturally Occurring Lightweight Foam-Filled Cylinder—The Peacock's Tail Coverts Shaft and Its Components,” Acta Biomaterialia 17 (2015): 137-151.

[12]

W. Huang, M. Shishehbor, N. Guarín-Zapata, et al., “A Natural Impact-Resistant Bicontinuous Composite Nanoparticle Coating,” Nature Materials 19, no. 11 (2020): 1236-1243.

[13]

F. Barthelat, “Nacre From Mollusk Shells: A Model for High-Performance Structural Materials,” Bioinspiration & Biomimetics 5, no. 3 (2010): 035001.

[14]

L. Wang, J. Lau, E. L. Thomas, and M. C. Boyce, “Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation,” Advanced Materials 23, no. 13 (2011): 1524-1529.

[15]

M. Zhang, Q. Yu, Z. Liu, et al., “3D Printed Mg-NiTi Interpenetrating-Phase Composites With High Strength, Damping Capacity, and Energy Absorption Efficiency,” Science Advances 6, no. 19 (2020): eaba5581.

[16]

M. Zhang, Q. Yu, H. Wang, et al., “Phase-Transforming Ag-NiTi 3-D Interpenetrating-Phase Composite With High Recoverable Strain, Strength and Electrical Conductivity,” Applied Materials Today 29, no. 29 (2022): 101639.

[17]

M. C. Flemings, “Solidification Processing,” Metallurgical Transactions 5 (1974): 2121-2134.

[18]

A. R. Studart, “Towards High-Performance Bioinspired Composites,” Advanced Materials 24, no. 37 (2012): 5024-5044.

[19]

Y. Liu, B. Chen, Z. Liu, Z. Zhang, and R. O. Ritchie, “Bioinspired Interpenetrating-Phase Metal Composites,” Progress in Materials Science 144 (2024): 101281.

[20]

U. G. K. Wegst, P. H. Kamm, K. Yin, and F. García-Moreno, “Freeze Casting,” Nature Reviews Methods Primers 4 (2024): 28.

[21]

M. Zhang, N. Zhao, Q. Yu, et al., “On the Damage Tolerance of 3-D Printed Mg-Ti Interpenetrating-Phase Composites With Bioinspired Architectures,” Nature Communications 13, no. 1 (2022): 3247.

[22]

Y. Liu, Q. Yu, G. Tan, et al., “Bioinspired Fish-Scale-Like Magnesium Composites Strengthened by Contextures of Continuous Titanium Fibers: Lessons From Nature,” Journal of Magnesium and Alloys 11, no. 3 (2023): 869-881.

[23]

A. V. Okulov, A. S. Volegov, J. Weissmüller, J. Markmann, and I. V. Okulov, “Dealloying-Based Metal-Polymer Composites for Biomedical Applications,” Scripta Materialia 146 (2018): 290-294.

[24]

M. Koyama, Z. Zhang, M. Wang, et al., “Bone-Like Crack Resistance in Hierarchical Metastable Nanolaminate Steels,” Science 355 (2017): 1055-1057.

[25]

D. Nepal, S. Kang, K. M. Adstedt, et al., “Hierarchically Structured Bioinspired Nanocomposites,” Nature Materials 22 (2023): 18-35.

[26]

Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, “Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications,” Progress in Materials Science 88 (2017): 467-498.

[27]

Z. Liu, Z. Zhang, and R. O. Ritchie, “Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics,” Advanced Functional Materials 30 (2020): 1908121.

[28]

J. Zhang, X. Sheng, and L. Jiang, “The Dewetting Properties of Lotus Leaves,” Langmuir 25, no. 3 (2009): 1371-1376.

[29]

T. Darmanin and F. Guittard, “Superhydrophobic and Superoleophobic Properties in Nature,” Materials Today 18, no. 5 (2015): 273-285.

[30]

Z. Liu, Z. Zhang, and R. O. Ritchie, “Interfacial Toughening Effect of Suture Structures,” Acta Biomaterialia 102 (2020): 75-82.

[31]

Y. Liu, X. Xie, Z. Liu, et al., “A Strong, Lightweight, and Damping Cermet Material With a Nacre-Like Ultrafine 3D Interpenetrated Architecture,” Materials Today 62 (2023): 62-70.

[32]

Y. Guo, X. Xie, Z. Liu, et al., “Wear-Resistant Ag-MAX Phase 3-D Interpenetrating-Phase Composites: Processing, Structure and Properties,” Nano Research 17, no. 2 (2024): 806-819.

[33]

R. O. Ritchie, “The Conflicts Between Strength and Toughness,” Nature Materials 10, no. 11 (2011): 817-822.

[34]

K. M. Sree Manu, L. Ajay Raag, T. P. D. Rajan, M. Gupta, and B. C. Pai, “Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review,” Metallurgical and Materials Transactions B 47B (2016): 2799-2819.

[35]

J. Zhang, Z. Liu, S. Wang, M. Zhang, D. Xu, and Z. Zhang, “Hierarchically Structured W-Cu Composite With High Strength by Reactive Melt Infiltration,” Scripta Materialia 259 (2025): 116544.

[36]

Z. Wu, H. Pan, P. Huang, J. Tang, and W. She, “Biomimetic Mechanical Robust Cement-Resin Composites With Machine Learning-Assisted Gradient Hierarchical Structures,” Advanced Materials 36 (2024): 2405183.

[37]

W. Lu, N. A. Lee, and M. J. Buehler, “Modeling and Design of Heterogeneous Hierarchical Bioinspired Spider Web Structures Using Deep Learning and Additive Manufacturing,” Proceedings of the National Academy of Sciences 120, no. 31 (2023): e2305273120.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/