Developing Advanced Mg-Based Solid-State Materials for Gas Separation and Purification: A Review

Ning Zhang , Xi Lin , Zhigang Hu , Wenjiang Ding , Jianxin Zou

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 480 -501.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 480 -501. DOI: 10.1002/idm2.12250
REVIEW

Developing Advanced Mg-Based Solid-State Materials for Gas Separation and Purification: A Review

Author information +
History +
PDF

Abstract

Magnesium (Mg) is globally abundant in resources, and Mg-based compounds—such as magnesium based hydrides, hydroxides, oxides, and magnesium metal-organic frameworks (Mg MOFs)—have shown significant application prospects in gas separation. This is largely due to the electronic characteristics of Mg or Mg2⁺ ions, which facilitate the capture of hydrogen (H2) and acidic gases such as carbon dioxide (CO2) and sulfur dioxide (SO2) from other gases. Consequently, exploring the use of Mg-based materials in gas separation and purification applications could not only advance the scientific understanding of solid-gas interaction mechanisms but also provide cost-effective solutions for gas separation technology at an industrial level. This review summarizes the recent practices and explorations of Mg-based solid-state materials in various gas separation and purification methods, including physical adsorption-based separation, chemical absorption-based separation, and membrane-based separation. For each separation method, the relevant Mg-based materials are discussed in detail, and key findings from existing research are presented and analyzed. Additionally, inspired by the straightforward design of air-stable hydrogen storage materials, this review specifically addresses anti-passivation strategies for Mg-based hydrides, which are crucial for their applications in hydrogen gas separation and purification. Finally, this review highlights key issues and fields for future research and development in Mg-based gas separation materials.

Keywords

absorption separation / adsorption separation / gas separation and purification / membrane separation / Mg-based materials

Cite this article

Download citation ▾
Ning Zhang, Xi Lin, Zhigang Hu, Wenjiang Ding, Jianxin Zou. Developing Advanced Mg-Based Solid-State Materials for Gas Separation and Purification: A Review. Interdisciplinary Materials, 2025, 4(3): 480-501 DOI:10.1002/idm2.12250

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Wu, Q. Gong, D. H. Olson, and J. Li, “Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks,” Chemical Reviews 112, no. 2 (2012): 836-868, https://doi.org/10.1021/cr200216x.

[2]

Z. R. Herm, E. D. Bloch, and J. R. Long, “Hydrocarbon Separations in Metal-Organic Frameworks,” Chemistry of Materials 26, no. 1 (2014): 323-338, https://doi.org/10.1021/cm402897c.

[3]

Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, and B. Chen, “Potential of Microporous Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures,” Energy & Environmental Science 9, no. 12 (2016): 3612-3641, https://doi.org/10.1039/C6EE01886F.

[4]

J. Teuchies, T. J. S. Cox, K. Van Itterbeeck, F. J. R. Meysman, and R. Blust, “The Impact of Scrubber Discharge on the Water Quality in Estuaries and Ports,” Environmental Sciences Europe 32, no. 1 (2020): 103, https://doi.org/10.1186/s12302-020-00380-z.

[5]

Z. Du, C. Liu, J. Zhai, et al., “A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles,” Catalysts 11, no. 3 (2021): 393, https://doi.org/10.3390/catal11030393.

[6]

X. Y. Chen, L. X. Wei, L. Deng, F. S. Yang, and Z. X. Zhang, “A Review on the Metal Hydride Based Hydrogen Purification and Separation Technology,” Applied Mechanics and Materials 448-453 (2013): 3027-3036, https://doi.org/10.4028/www.scientific.net/AMM.448-453.3027.

[7]

Á. A. Ramírez-Santos, C. Castel, and E. Favre, “A Review of Gas Separation Technologies Within Emission Reduction Programs in the Iron and Steel Sector: Current Application and Development Perspectives,” Separation and Purification Technology 194 (2018): 425-442, https://doi.org/10.1016/j.seppur.2017.11.063.

[8]

M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, and R. Songolzadeh, “Carbon Dioxide Separation From Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions,” Scientific World Journal 2014, no. 1 (2014): 1-34, https://doi.org/10.1155/2014/828131.

[9]

A. R. Kamble, C. M. Patel, and Z. V. P. Murthy, “A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes,” Renewable and Sustainable Energy Reviews 145 (2021): 111062, https://doi.org/10.1016/j.rser.2021.111062.

[10]

M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, “50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities,” Macromolecules 50, no. 20 (2017): 7809-7843, https://doi.org/10.1021/acs.macromol.7b01718.

[11]

X. Tang, T. Li, Y. Hao, X. Wu, and Y. Zhu, “Removal Efficiency of Magnesium Base-Seawater Desulfurization for Marine Flue Gas,” Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering 20, no. 6 (2012): 1081-1087, https://doi.org/10.3969/j.issn.1005-0930.2012.06.014.

[12]

R. Krishna and J. M. Van Baten, “In Silico Screening of Metal-Organic Frameworks in Separation Applications,” Physical Chemistry Chemical Physics 13, no. 22 (2011): 10593-10616, https://doi.org/10.1039/c1cp20282k.

[13]

I. P. Jain, C. Lal, and A. Jain, “Hydrogen Storage in Mg: A Most Promising Material,” International Journal of Hydrogen Energy 35, no. 10 (2010): 5133-5144, https://doi.org/10.1016/j.ijhydene.2009.08.088.

[14]

C. Gao, J. Liao, J. Lu, J. Ma, and E. Kianfar, “The Effect of Nanoparticles on Gas Permeability With Polyimide Membranes and Network Hybrid Membranes: A Review,” Reviews in Inorganic Chemistry 41, no. 1 (2021): 1-20, https://doi.org/10.1515/revic-2020-0007.

[15]

L. Wang, Y. Yao, T. Tran, et al., “Mesoporous MgO Enriched in Lewis Base Sites as Effective Catalysts for Efficient CO2 Capture,” Journal of Environmental Management 332 (2023): 117398, https://doi.org/10.1016/j.jenvman.2023.117398.

[16]

X. Sun, S. Zeng, G. Li, et al., “Selective CO2 Separation Through Physicochemical Absorption by Triazole-Functionalized Ionic Liquid Binary Absorbents,” AIChE Journal 70, no. 5 (2024): e18376, https://doi.org/10.1002/aic.18376.

[17]

M. A. Hanif, N. Ibrahim, and A. Abdul Jalil, “Sulfur Dioxide Removal: An Overview of Regenerative Flue Gas Desulfurization and Factors Affecting Desulfurization Capacity and Sorbent Regeneration,” Environmental Science and Pollution Research 27, no. 22 (2020): 27515-27540, https://doi.org/10.1007/s11356-020-09191-4.

[18]

R. P. P. L. Ribeiro, C. A. Grande, and A. E. Rodrigues, “Electric Swing Adsorption for Gas Separation and Purification: A Review,” Separation Science and Technology 49, no. 13 (2014): 1985-2002, https://doi.org/10.1080/01496395.2014.915854.

[19]

A. Ntiamoah, J. Ling, P. Xiao, P. A. Webley, and Y. Zhai, “CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration,” Industrial & Engineering Chemistry Research 55, no. 3 (2016): 703-713, https://doi.org/10.1021/acs.iecr.5b01384.

[20]

S. Saysset, G. Grévillot, and A. Lamine, “Adsorption of Volatile Organic Compounds on Carbonaceous Adsorbent and Desorption by Direct Joule Effect,” Récents Progrès en Genie des Procédés 68 (1999): 389-396.

[21]

C. W. Skarstrom, “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption,” Published online July 12, 1960, https://patents.google.com/patent/US2944627A/en.

[22]

C. A. Grande, “Advances in Pressure Swing Adsorption for Gas Separation,” ISRN Chemical Engineering 2012, no. 1 (2012): 1-13, https://doi.org/10.5402/2012/982934.

[23]

M. Ishibashi, H. Ota, N. Akutsu, et al., “Technology for Removing Carbon Dioxide From Power Plant Flue Gas by the Physical Adsorption Method,” Energy Conversion and Management 37, no. 6/8 (1996): 929-933.

[24]

V. Mulgundmath and F. H. Tezel, “Optimisation of Carbon Dioxide Recovery From Flue Gas in a TPSA System,” Adsorption 16, no. 6 (2010): 587-598, https://doi.org/10.1007/s10450-010-9255-9.

[25]

R. Guo, “A Look at China's Potential for Flue Gas Desulfurization by Magnesium Oxide Through Overseas R&D Progress,” Sulphur Phosphorus & Bulk Materials Handling no. 2 (2009): 1-5, https://doi.org/10.16341/j.cnki.spbmh.2009.02.007.

[26]

Y. Zhu, X. Tang, T. Li, et al., “Shipboard Trials of Magnesium-Based Exhaust Gas Cleaning System,” Ocean Engineering 128 (2016): 124-131, https://doi.org/10.1016/j.oceaneng.2016.10.004.

[27]

X. J. Tang, T. Li, H. Yu, and Y. M. Zhu, “Prediction Model for Desulphurization Efficiency of Onboard Magnesium-Base Seawater Scrubber,” Ocean Engineering 76 (2014): 98-104, https://doi.org/10.1016/j.oceaneng.2013.11.009.

[28]

Z. Zhao, Y. Zhang, Y. Shao, et al., “Simulation of SO2 Removal Process From Marine Exhaust Gas by Hybrid Exhaust Gas Cleaning Systems (EGCS) Using Seawater and Magnesium-Based Absorbent,” Separation and Purification Technology 287 (2022): 120557, https://doi.org/10.1016/j.seppur.2022.120557.

[29]

Q. Liu, Y. Zhu, X. Tang, et al., “Modeling and Prediction of Desulfurization Efficiency for Magnesium-Based Seawater Exhaust Gas Clean System,” Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, no. 1 (2019): 325-332, https://doi.org/10.1177/1475090217744905.

[30]

L. Yan, X. Lu, Q. Wang, and Q. Guo, “Recovery of SO2 and MgO From by-Products of MgO Wet Flue Gas Desulfurization,” Environmental Engineering Science 31, no. 11 (2014): 621-630, https://doi.org/10.1089/ees.2014.0004.

[31]

W. Lidong, M. Yongliang, Z. Wendi, L. Qiangwei, Z. Yi, and Z. Zhanchao, “Macrokinetics of Magnesium Sulfite Oxidation Inhibited by Ascorbic Acid,” Journal of Hazardous Materials 258-259 (2013): 61-69, https://doi.org/10.1016/j.jhazmat.2013.04.018.

[32]

S. Kwon, S. Baek, D. R. Mumm, S. H. Hong, and M. Song, “Enhancement of the Hydrogen Storage Characteristics of Mg by Reactive Mechanical Grinding With Ni, Fe and Ti,” International Journal of Hydrogen Energy 33, no. 17 (2008): 4586-4592, https://doi.org/10.1016/j.ijhydene.2008.05.097.

[33]

Z. R. Herm, R. Krishna, and J. R. Long, “CO2/CH4, CH4/H2 and CO2/CH4/H2 Separations at High Pressures Using Mg2(dobdc),” Microporous and Mesoporous Materials 151 (2012): 481-487, https://doi.org/10.1016/j.micromeso.2011.09.004.

[34]

H. Shao, L. He, H. Lin, and H. W. Li, “Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review,” Energy Technology 6, no. 3 (2018): 445-458, https://doi.org/10.1002/ente.201700401.

[35]

L. Ren, Y. Li, N. Zhang, et al., “Nanostructuring of Mg-Based Hydrogen Storage Materials: Recent Advances for Promoting Key Applications,” Nano-Micro Letters 15, no. 1 (2023): 93, https://doi.org/10.1007/s40820-023-01041-5.

[36]

L. Guo, Z. Wu, H. Wang, et al., “Efficient Hydrogen Recovery and Purification From Industrial Waste Hydrogen to High-Purity Hydrogen Based on Metal Hydride Powder,” Chemical Engineering Journal 455 (2023): 140689, https://doi.org/10.1016/j.cej.2022.140689.

[37]

X. Lin, C. Yin, L. Ren, et al., “A One- and Three-Dimensional Coupled Model and Simulation Investigation for the Large-Scale Oil-Heating Type Mg-Based Hydrogen Storage Tank,” Chemical Engineering Journal 472 (2023): 144943, https://doi.org/10.1016/j.cej.2023.144943.

[38]

L. Shao, X. Lin, L. Bian, et al., “Engineering Control Strategy of Hydrogen Gas Direct-Heating Type Mg-Based Solid State Hydrogen Storage Tanks: A Simulation Investigation,” Applied Energy 375 (2024): 124134, https://doi.org/10.1016/j.apenergy.2024.124134.

[39]

L. Shao, X. Lin, X. Yang, et al., “Magnesium-Based Hydrogen Storage Tanks: A Review of Research, Development and Simulation Models,” Renewable and Sustainable Energy Reviews 211 (2025): 115332, https://doi.org/10.1016/j.rser.2025.115332.

[40]

C. Zhou, Z. Z. Fang, P. Sun, L. Xu, and Y. Liu, “Capturing Low-Pressure Hydrogen Using VTiCr Catalyzed Magnesium Hydride,” Journal of Power Sources 413 (2019): 139-147, https://doi.org/10.1016/j.jpowsour.2018.12.048.

[41]

H. Wang, Y. Liu, and J. Zhang, “Hydrogen Purification by Mg Alloy Hydrogen Adsorbent,” Adsorption 28, no. 1 (2022): 85-95, https://doi.org/10.1007/s10450-021-00348-2.

[42]

F. G. Eisenberg and P. D. Goodell, “Cyclic Response of Reversible Hydriding Alloys in Hydrogen Containing Carbon Monoxide,” Journal of the Less Common Metals 89, no. 1 (1983): 55-62, https://doi.org/10.1016/0022-5088(83)90248-5.

[43]

H. Liang, D. Chen, M. Chen, W. Li, and R. Snyders, “Study of the Synthesis of PMMA-Mg Nanocomposite for Hydrogen Storage Application,” International Journal of Hydrogen Energy 45, no. 7 (2020): 4743-4753, https://doi.org/10.1016/j.ijhydene.2019.12.039.

[44]

E. S. Cho, A. M. Ruminski, S. Aloni, Y. S. Liu, J. Guo, and J. J. Urban, “Graphene Oxide/Metal Nanocrystal Multilaminates as the Atomic Limit for Safe and Selective Hydrogen Storage,” Nature Communications 7, no. 1 (2016): 10804, https://doi.org/10.1038/ncomms10804.

[45]

S. S. Shinde, D. H. Kim, J. Y. Yu, and J. H. Lee, “Self-Assembled Air-Stable Magnesium Hydride Embedded in 3-D Activated Carbon for Reversible Hydrogen Storage,” Nanoscale 9, no. 21 (2017): 7094-7103, https://doi.org/10.1039/C7NR01699A.

[46]

K. J. Jeon, H. R. Moon, A. M. Ruminski, et al., “Air-Stable Magnesium Nanocomposites Provide Rapid and High-Capacity Hydrogen Storage Without Using Heavy-Metal Catalysts,” Nature Materials 10, no. 4 (2011): 286-290, https://doi.org/10.1038/nmat2978.

[47]

M. Chen, X. Xie, P. Liu, and T. Liu, “Facile Fabrication of Ultrathin Carbon Layer Encapsulated Air-Stable Mg Nanoparticles With Enhanced Hydrogen Storage Properties,” Chemical Engineering Journal 337, no. 1 (2018): 161-168.

[48]

W. Ali, Y. Qin, N. A. Khan, et al., “Highly Air-Stable Magnesium Hydrides Encapsulated by Nitrogen-Doped Graphene Nanospheres With Favorable Hydrogen Storage Kinetics,” Chemical Engineering Journal 480, no. 15 (2024): 148163.

[49]

Z. Ma, Q. Tang, J. Ni, et al., “Synergistic Effect of TiH2 and Air Exposure on Enhancing Hydrogen Storage Performance of Mg2NiH4,” Chemical Engineering Journal 433 (2022): 134489, https://doi.org/10.1016/j.cej.2021.134489.

[50]

N. Hanada, T. Ichikawa, and H. Fujii, “Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling,” Journal of Physical Chemistry B 109, no. 15 (2005): 7188-7194, https://doi.org/10.1021/jp044576c.

[51]

R. Shi, H. Yan, J. Zhang, et al., “Vacancy-Mediated Hydrogen Spillover Improving Hydrogen Storage Properties and Air Stability of Metal Hydrides,” Small 17, no. 31 (2021): 2100852, https://doi.org/10.1002/smll.202100852.

[52]

M. Safarzadeh Khosrowshahi, A. Afshari Aghajari, M. Rahimi, et al., “Recent Progress on Advanced Solid Adsorbents for CO2 Capture: From Mechanism to Machine Learning,” Materials Today Sustainability 27 (2024): 100900, https://doi.org/10.1016/j.mtsust.2024.100900.

[53]

Z. Zhu, X. Shi, Y. Rao, and Y. Huang, “Recent Progress of MgO-Based Materials in CO2 Adsorption and Conversion: Modification Methods, Reaction Condition, and CO2 Hydrogenation,” Chinese Chemical Letters 35, no. 5 (2024): 108954, https://doi.org/10.1016/j.cclet.2023.108954.

[54]

H. Bekhti, H. Bouchafaa, R. Melouki, A. Travert, and Y. Boucheffa, “Adsorption of CO2 over MgO−Impregnated Nayzeolites and Modeling Study,” Microporous and Mesoporous Materials 294, no. 1 (2020): 109866, https://doi.org/10.1016/j.micromeso.2019.109866.

[55]

Y. D. Ding, G. Song, X. Zhu, R. Chen, and Q. Liao, “Synthesizing MgO With a High Specific Surface for Carbon Dioxide Adsorption,” RSC Advances 5, no. 39 (2015): 30929-30935, https://doi.org/10.1039/c4ra15127e.

[56]

G. Song, X. Zhu, R. Chen, Q. Liao, Y. D. Ding, and L. Chen, “An Investigation of CO2 Adsorption Kinetics on Porous Magnesium Oxide,” Chemical Engineering Journal 283 (2016): 175-183, https://doi.org/10.1016/j.cej.2015.07.055.

[57]

H. X. Fan, T. Y. Cui, A. Rajendran, et al., “Comparative Study on the Activities of Different Mgo Surfaces in CO2 Activation and Hydrogenation,” Catalysis Today 356 (2020): 535-543, https://doi.org/10.1016/j.cattod.2020.03.010.

[58]

M. B. Jensen, L. G. M. Pettersson, O. Swang, and U. Olsbye, “CO2 Sorption on MgO and CaO Surfaces: A Comparative Quantum Chemical Cluster Study,” Journal of Physical Chemistry B 109, no. 35 (2005): 16774-16781, https://doi.org/10.1021/jp052037h.

[59]

Q. Wang, J. Luo, Z. Zhong, and A. Borgna, “CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends,” Energy & Environmental Science 4, no. 1 (2011): 42-55, https://doi.org/10.1039/C0EE00064G.

[60]

Y. Duan and D. C. Sorescu, “CO2 Capture Properties of Alkaline Earth Metal Oxides and Hydroxides: A Combined Density Functional Theory and Lattice Phonon Dynamics Study,” Journal of Chemical Physics 133, no. 7 (2010): 074508, https://doi.org/10.1063/1.3473043.

[61]

G. Bang, K. M. Kim, S. Jin, and C. H. Lee, “Dynamic CO2 Sorption on MgO-Based Sorbent in the Presence of CO and H2O at Elevated Pressures,” Chemical Engineering Journal 433 (2022): 134607, https://doi.org/10.1016/j.cej.2022.134607.

[62]

A. Widera, D. Thöny, M. Aebli, et al., “Solid-State Investigation, Storage, and Separation of Pyrophoric PH3 and P2H4 With α-Mg Formate,” Angewandte Chemie International Edition 62, no. 13 (2023): e202217534, https://doi.org/10.1002/anie.202217534.

[63]

S. I. Jo, Y. I. An, K. Y. Kim, et al., “Mechanisms of Absorption and Desorption of CO2 by Molten NaNO3 -Promoted MgO,” Physical Chemistry Chemical Physics 19, no. 8 (2017): 6224-6232, https://doi.org/10.1039/C6CP07787K.

[64]

W. Gao, T. Zhou, Y. Gao, B. Louis, D. O'Hare, and Q. Wang, “Molten Salts-Modified MgO-Based Adsorbents for Intermediate-Temperature CO2 Capture: A Review,” Journal of Energy Chemistry 26, no. 5 (2017): 830-838, https://doi.org/10.1016/j.jechem.2017.06.005.

[65]

W. Gao, J. Xiao, Q. Wang, et al., “Unravelling the Mechanism of Intermediate-Temperature CO2 Interaction With Molten-NaNO3-Salt-Promoted MgO,” Advanced Materials 34, no. 4 (2022): 2106677, https://doi.org/10.1002/adma.202106677.

[66]

J. S. Kwak, K. Y. Kim, J. W. Yoon, K. R. Oh, and Y. U. Kwon, “Interfacial Interactions Govern the Mechanisms of CO2 Absorption and Desorption on A2CO3-Promoted MgO (A = Na, K, Rb, and Cs) Absorbents,” Journal of Physical Chemistry C 122, no. 35 (2018): 20289-20300, https://doi.org/10.1021/acs.jpcc.8b04895.

[67]

W. Gao, T. Zhou, and Q. Wang, “Controlled Synthesis of MgO With Diverse Basic Sites and Its CO2 Capture Mechanism Under Different Adsorption Conditions,” Chemical Engineering Journal 336 (2018): 710-720, https://doi.org/10.1016/j.cej.2017.12.025.

[68]

K. Ho, S. Jin, M. Zhong, A. T. Vu, and C. H. Lee, “Sorption Capacity and Stability of Mesoporous Magnesium Oxide in Post-Combustion CO2 Capture,” Materials Chemistry and Physics 198 (2017): 154-161, https://doi.org/10.1016/j.matchemphys.2017.06.002.

[69]

S. J. Han, Y. Bang, H. J. Kwon, et al., “Elevated Temperature CO2 Capture on Nano-Structured MgO-Al2O3 Aerogel: Effect of Mg/Al Molar Ratio,” Chemical Engineering Journal 242 (2014): 357-363, https://doi.org/10.1016/j.cej.2013.12.092.

[70]

J. Pan, Q. Yu, X. Ren, Q. Wang, Y. Li, and N. Shi, “Influence of the Precursors Selection on the Porous Structure and Adsorption Properties of C/g-C3N4 Composites,” ChemistrySelect 7, no. 23 (2022): e202200997, https://doi.org/10.1002/slct.202200997.

[71]

Y. Guo, C. Tan, J. Sun, et al., “Nanostructured MgO Sorbents Derived From Organometallic Magnesium Precursors for Post-Combustion CO2 Capture,” Energy & Fuels 32, no. 6 (2018): 6910-6917, https://doi.org/10.1021/acs.energyfuels.8b00866.

[72]

Y. Guo, C. Tan, P. Wang, et al., “Magnesium-Based Basic Mixtures Derived From Earth-Abundant Natural Minerals for CO2 Capture in Simulated Flue Gas,” Fuel 243 (2019): 298-305, https://doi.org/10.1016/j.fuel.2019.01.108.

[73]

L. Li, X. Wen, X. Fu, et al., “MgO/Al2O3 Sorbent for CO2 Capture,” Energy & Fuels 24, no. 10 (2010): 5773-5780, https://doi.org/10.1021/ef100817f.

[74]

K. K. Han, Y. Zhou, Y. Chun, and J. H. Zhu, “Efficient MgO-Based Mesoporous CO2 Trapper and Its Performance at High Temperature,” Journal of Hazardous Materials 203-204 (2012): 341-347, https://doi.org/10.1016/j.jhazmat.2011.12.036.

[75]

M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, P. M. Mei, and H. T. Jang, “A Direct Synthesis of Mesoporous Carbon Supported MgO Sorbent for CO2 Capture,” Fuel 90, no. 4 (2011): 1662-1667, https://doi.org/10.1016/j.fuel.2010.10.050.

[76]

T. K. Kim, K. J. Lee, J. Yuh, S. K. Kwak, and H. R. Moon, “Multi-Core MgO NPs@C Core-Shell Nanospheres for Selective CO2 Capture Under Mild Conditions,” New Journal of Chemistry 38, no. 4 (2014): 1606-1610, https://doi.org/10.1039/C4NJ00067F.

[77]

S. R. Caskey, A. G. Wong-Foy, and A. J. Matzger, “Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer With Cylindrical Pores,” Journal of the American Chemical Society 130, no. 33 (2008): 10870-10871, https://doi.org/10.1021/ja8036096.

[78]

K. Tan, S. Zuluaga, Q. Gong, et al., “Competitive Coadsorption of CO2 With H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding,” Chemistry of Materials 27, no. 6 (2015): 2203-2217, https://doi.org/10.1021/acs.chemmater.5b00315.

[79]

D. Adhikari, R. Karki, K. Adhikari, and N. Pantha, “First-Principles Study on the Selective Separation of Toxic Gases by Mg-MOF-74,” ACS Omega 9, no. 4 (2024): 4849-4856, https://doi.org/10.1021/acsomega.3c08358.

[80]

T. Pham, K. A. Forrest, R. Banerjee, G. Orcajo, J. Eckert, and B. Space, “Understanding the H2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn),” Journal of Physical Chemistry C 119, no. 2 (2015): 1078-1090, https://doi.org/10.1021/jp510253m.

[81]

T. Nguyen-Thuy, P. Le-Hoang, N. Hoang Vu, et al., “Hydrogen Adsorption Mechanism of MOF-74 Metal-Organic Frameworks: An Insight From First Principles Calculations,” RSC Advances 10, no. 72 (2020): 43940-43949, https://doi.org/10.1039/D0RA08864A.

[82]

X. J. Hou, P. He, H. Li, and X. Wang, “Understanding the Adsorption Mechanism of C2H2, CO2, and CH4 in Isostructural Metal-Organic Frameworks With Coordinatively Unsaturated Metal Sites,” Journal of Physical Chemistry C 117, no. 6 (2013): 2824-2834, https://doi.org/10.1021/jp310517r.

[83]

D. Britt, H. Furukawa, B. Wang, T. G. Glover, and O. M. Yaghi, “Highly Efficient Separation of Carbon Dioxide by a Metal-Organic Framework Replete With Open Metal Sites,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 49 (2009): 20637-20640, https://doi.org/10.1073/pnas.0909718106.

[84]

S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl, and C. W. Jones, “Modification of the Mg/DOBDC MOF With Amines to Enhance CO2 Adsorption From Ultradilute Gases,” Journal of Physical Chemistry Letters 3, no. 9 (2012): 1136-1141, https://doi.org/10.1021/jz300328j.

[85]

R. Sharma, D. Sürmeli, T. R. C. Van Assche, et al., “An Ultra-Permeable Hybrid Mg-MOF-74-Melamine Sponge Composite for Fast Dynamic Gas Separation,” Microporous and Mesoporous Materials 343 (2022): 112146, https://doi.org/10.1016/j.micromeso.2022.112146.

[86]

R. Ben-Mansour and N. A. A. Qasem, “An Efficient Temperature Swing Adsorption (TSA) Process for Separating CO2 From CO2/N2 Mixture Using Mg-MOF-74,” Energy Conversion and Management 156 (2018): 10-24, https://doi.org/10.1016/j.enconman.2017.11.010.

[87]

H. J. K. Shabbani, M. R. Othman, S. K. Al- Janabi, A. R. Barron, and Z. Helwani, “H2 Purification Employing Pressure Swing Adsorption Process: Parametric and Bibliometric Review,” International Journal of Hydrogen Energy 50 (2024): 674-699, https://doi.org/10.1016/j.ijhydene.2023.11.069.

[88]

M. H. Weston, W. Morris, P. W. Siu, et al., “Phosphine Gas Adsorption in a Series of Metal-Organic Frameworks,” Inorganic Chemistry 54, no. 17 (2015): 8162-8164, https://doi.org/10.1021/acs.inorgchem.5b01055.

[89]

S. E. Henkelis, P. T. Judge, S. E. Hayes, and T. M. Nenoff, “Preferential SOx Adsorption in Mg-MOF-74 From a Humid Acid Gas Stream,” ACS Applied Materials & Interfaces 13, no. 6 (2021): 7278-7284, https://doi.org/10.1021/acsami.0c21298.

[90]

M. B. Kim, S. J. Lee, C. Y. Lee, and Y. S. Bae, “High SF6 Selectivities and Capacities in Isostructural Metal-Organic Frameworks With Proper Pore Sizes and Highly Dense Unsaturated Metal Sites,” Microporous and Mesoporous Materials 190 (2014): 356-361, https://doi.org/10.1016/j.micromeso.2014.02.028.

[91]

S. Thomas, F. Mayr, and A. Gagliardi, “Adsorption and Sensing Properties of SF6 Decomposed Gases on Mg-MOF-74,” Solid State Communications 363 (2023): 115120, https://doi.org/10.1016/j.ssc.2023.115120.

[92]

L. M. Robeson, “Correlation of Separation Factor Versus Permeability for Polymeric Membranes,” Journal of Membrane Science 62, no. 2 (1991): 165-185, https://doi.org/10.1016/0376-7388(91)80060-J.

[93]

R. Sidhikku Kandath Valappil, N. Ghasem, and M. Al-Marzouqi, “Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review,” Journal of Industrial and Engineering Chemistry 98 (2021): 103-129, https://doi.org/10.1016/j.jiec.2021.03.030.

[94]

C. E. Powell and G. G. Qiao, “Polymeric CO2/N2 Gas Separation Membranes for the Capture of Carbon Dioxide From Power Plant Flue Gases,” Journal of Membrane Science 279, no. 1/2 (2006): 1-49, https://doi.org/10.1016/j.memsci.2005.12.062.

[95]

A. Ö. Yazaydın, R. Q. Snurr, T. H. Park, et al., “Screening of Metal-Organic Frameworks for Carbon Dioxide Capture From Flue Gas Using a Combined Experimental and Modeling Approach,” Journal of the American Chemical Society 131, no. 51 (2009): 18198-18199, https://doi.org/10.1021/ja9057234.

[96]

V. Kovačević, D. Vrsaljko, S. Lučić Blagojević, and M. Leskovac, “Adhesion Parameters at the Interface in Nanoparticulate Filled Polymer Systems,” Polymer Engineering & Science 48, no. 10 (2008): 1994-2002, https://doi.org/10.1002/pen.21132.

[97]

M. M. Rajpure, R. B. Mujmule, U. Kim, and H. Kim, “Fabrication of MgO Nanorods Blended Cellulose Acetate-Based Mixed Matrix Membranes for Selective Gas Separation of H2/CH4, CO2/CH4 and H2/CO2: Effect of Loading and Pressure,” International Journal of Hydrogen Energy 50 (2024): 615-628, https://doi.org/10.1016/j.ijhydene.2023.09.238.

[98]

P. C. Wu, H. Y. Wang, D. Y. Kang, and K. L. Tung, “Green Delamination of 2D LDH Nanosheets Incorporated in Mixed Matrix Membrane for CO2 Capture,” Journal of Membrane Science 702 (2024): 122797, https://doi.org/10.1016/j.memsci.2024.122797.

[99]

M. Barooah, S. Kundu, S. Kumar, et al., “New Generation Mixed Matrix Membrane for CO2 Separation: Transition From Binary to Quaternary Mixed Matrix Membrane,” Chemosphere 354 (2024): 141653, https://doi.org/10.1016/j.chemosphere.2024.141653.

[100]

T. H. Novita, W. W. Lestari, J. H. Pratama, T. Gunawan, N. Widiastuti, and D. S. Handayani, “Novel Mixed Matrix Membranes (MMMs) Based on Metal-Organic Framework (MOF) [Mg3(BTC)2]/poly-ether Sulfone (PES): Preparation and Application for CO2 Gas Separation,” Journal of Polymer Research 28, no. 11 (2021): 434, https://doi.org/10.1007/s10965-021-02796-4.

[101]

S. Hosseini, Y. Li, T. Chung, and Y. Liu, “Enhanced Gas Separation Performance of Nanocomposite Membranes Using MgO Nanoparticles,” Journal of Membrane Science 302, no. 1 (2007): 207-217, https://doi.org/10.1016/j.memsci.2007.06.062.

[102]

S. M. Momeni and M. Pakizeh, “Preparation, Characterization and Gas Permeation Study of Psf/MgO Nanocomposite Membrane,” Brazilian Journal of Chemical Engineering 30 (2013): 589-597, https://doi.org/10.1590/S0104-66322013000300016.

[103]

N. Azizi, M. H. Jazebizadeh, F. Azizi, O. Jahanmahin, P. S. Parsamehr, and M. Arzani, “Enhancing CO2 Permeation Features of PEBAX-Based Membrane via Incorporating MgO Nanoparticles in Its Polymeric Matrix,” Materials Today Communications 34 (2023): 105460, https://doi.org/10.1016/j.mtcomm.2023.105460.

[104]

N. Azizi, O. Jahanmahin, R. Homayoon, and M. Khajouei, “A New Ternary Mixed-Matrix Membrane (PEBAX/PEG/MgO) to Enhance CO2/CH4 and CO2/N2 Separation Efficiency,” Korean Journal of Chemical Engineering 40, no. 6 (2023): 1457-1473, https://doi.org/10.1007/s11814-023-1391-5.

[105]

N. Y. Huang, C. C. Wang, and C. Y. Chen, “Ethylene Vinyl Acetate Copolymer/Mg-Al-Layered Double Hydroxide Nanocomposite Membranes Applied in CO2/N2 gas Separation,” Polymer Composites 42, no. 8 (2021): 4065-4072, https://doi.org/10.1002/pc.26117.

[106]

N. Liu, J. Cheng, W. Hou, et al., “Mg2(dobdc) Crystals Adhere to Matrimid Matrix Membranes Bridged by Diethylenetriamine (DETA) as an Adhesion Agent for Efficient CO2 Separation,” Separation and Purification Technology 278 (2021): 119635, https://doi.org/10.1016/j.seppur.2021.119635.

[107]

S. Majumdar, B. Tokay, V. Martin-Gil, et al., “Mg-MOF-74/Polyvinyl Acetate (PVAc) Mixed Matrix Membranes for CO2 Separation,” Separation and Purification Technology 238 (2020): 116411, https://doi.org/10.1016/j.seppur.2019.116411.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/