All Inorganic Halide Perovskite Superlattices With All Visible Spectral Collective Coherent Emissions

Xiaoqian Wang , Zisheng Tang , Wanli Liu , Jiazhen He , Yuqing Li , Dafu Zhao , Cheng Wang , Ti Wang , Kang Song , Bao-Lian Su , Dongyuan Zhao , Yong Liu

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) : 568 -575.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (4) :568 -575. DOI: 10.1002/idm2.12248
SHORT COMMUNICATION

All Inorganic Halide Perovskite Superlattices With All Visible Spectral Collective Coherent Emissions

Author information +
History +
PDF

Abstract

Self-assembled inorganic halide perovskite superlattices (HPSLs) have attracted extensive attention for their well-ordered structure and unique collective photonic properties, which differ from those of individual nanocrystals (NCs). However, the manipulation of ordered HPSLs with all-halogen and alloyed halogen components, as well as the regulation of their coherent spontaneous emission across the visible spectrum, remains underexplored. In this study, we employ a combination of anion-exchange reactions and a slow solvent evaporation strategy to self-assemble monodisperse, uniform all inorganic perovskite NCs into a series of well-defined, long-range ordered, and densely packed CsPbX3 (X = Cl, Br, I, and mixed halide systems such as Cl/Br, Br/I, and Cl/Br/I) superlattices, achieving coherent photoluminescence (PL) emission across the entire visible spectrum (400–700 nm). Notably, the collective coherent emission of all HPSLs exhibits dynamic redshifts and accelerated collective radiative decay due to strong electronic coupling between NCs at cryogenic temperatures (7 K). This study not only systematically investigates all-halide compositional HPSLs but also paves the way for quantum light source applications across the visible spectrum.

Keywords

coherent emissions / entire visible spectrum-tuning / halide perovskite superlattices

Cite this article

Download citation ▾
Xiaoqian Wang, Zisheng Tang, Wanli Liu, Jiazhen He, Yuqing Li, Dafu Zhao, Cheng Wang, Ti Wang, Kang Song, Bao-Lian Su, Dongyuan Zhao, Yong Liu. All Inorganic Halide Perovskite Superlattices With All Visible Spectral Collective Coherent Emissions. Interdisciplinary Materials, 2025, 4(4): 568-575 DOI:10.1002/idm2.12248

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chemical Reviews 116 (2016): 11220–11289.

[2]

M. S. Lee, D. W. Yee, M. Ye, and R. J. Macfarlane, “Nanoparticle Assembly as a Materials Development Tool,” Journal of the American Chemical Society 144 (2022): 3330–3346.

[3]

Q. Le-Van, E. Zoethout, E. J. Geluk, M. Ramezani, M. Berghuis, and J. Gómez Rivas, “Enhanced Quality Factors of Surface Lattice Resonances in Plasmonic Arrays of Nanoparticles,” Advanced Optical Materials 7 (2019): 1801451.

[4]

H. Pashaei Adl, S. Gorji, G. Muñoz-Matutano, et al., “Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlattices,” Advanced Optical Materials 11 (2023): 2202497.

[5]

Y. Tang, D. Poonia, M. van der Laan, et al., “Electronic Coupling of Highly Ordered Perovskite Nanocrystals in Supercrystals,” ACS Applied Energy Materials 5 (2022): 5415–5422.

[6]

R. D. Septianto, R. Miranti, T. Kikitsu, et al., “Enabling Metallic Behaviour in Two-Dimensional Superlattice of Semiconductor Colloidal Quantum Dots,” Nature Communications 14 (2023): 2670.

[7]

Z. Li, Q. Fan, Z. Ye, C. Wu, Z. Wang, and Y. Yin, “A Magnetic Assembly Approach to Chiral Superstructures,” Science 380 (2023): 1384–1390.

[8]

C. Li, X. Li, X. Liu, et al., “On-Substrate Fabrication of CsPbBr3 Single-Crystal Microstructures via Nanoparticle Self-Assembly-Assisted Low-Temperature Sintering,” ACS Nano 18 (2024): 9128–9136.

[9]

L. Chen, B. Zhou, Y. Hu, et al., “Stable Multi-Wavelength Lasing in Single Perovskite Quantum Dot Superlattice,” Advanced Optical Materials 10 (2022): 2200494.

[10]

S. Premachandran, R. Haldavnekar, S. Ganesh, S. Das, K. Venkatakrishnan, and B. Tan, “Self-Functionalized Superlattice Nanosensor Enables Glioblastoma Diagnosis Using Liquid Biopsy,” ACS Nano 17 (2023): 19832–19852.

[11]

Y. Zhu, Y. Deng, P. Bai, et al., “Highly Efficient Light-Emitting Diodes Based on Self-Assembled Colloidal Quantum Wells,” Advanced Materials 35 (2023): 2305382.

[12]

G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, “Superfluorescence From Lead Halide Perovskite Quantum Dot Superlattices,” Nature 563 (2018): 671–675.

[13]

I. Cherniukh, G. Rainò, T. Stöferle, et al., “Perovskite-Type Superlattices From Lead Halide Perovskite Nanocubes,” Nature 593 (2021): 535–542.

[14]

J. Liu, X. Zheng, O. F. Mohammed, and O. M. Bakr, “Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications,” Accounts of Chemical Research 55 (2022): 262–274.

[15]

Y. Liao, X. Xi, H. Chen, J. Liu, X.-Z. Fu, and J.-L. Luo, “The Emerging Sr2FeMoO6-Based Electrocatalysts for Solid Oxide Electrochemical Cell: Synthesis, Modulation and Applications,” Chemical Synthesis 4 (2024): 18.

[16]

R. Ouyang, J. Xu, X. Zhong, et al., “SrSnO3 Perovskite vs. Nd2Sn2O7 Pyrochlores for Oxidative Coupling of Methane: Deciphering the Reactive Sites Difference,” Chemical Synthesis 4 (2024): 72.

[17]

C. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik, and A. Eychmüller, “Solid-State Anion Exchange Reactions for Color Tuning of CsPbX3 Perovskite Nanocrystals,” Chemistry of Materials 28 (2016): 9033–9040.

[18]

H. Liu, Z. Liu, W. Xu, et al., “Engineering the Photoluminescence of CsPbX3 (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra With the Interval of 1 nm,” ACS Applied Materials & Interfaces 11 (2019): 14256–14265.

[19]

P. V. Kamat and M. Kuno, “Halide Ion Migration in Perovskite Nanocrystals and Nanostructures,” Accounts of Chemical Research 54 (2021): 520–531.

[20]

C. Zhou, J. M. Pina, T. Zhu, et al., “Quantum Dot Self-Assembly Enables Low-Threshold Lasing,” Advanced Science 8 (2021): 2101125.

[21]

J. De Roo, M. Ibáñez, P. Geiregat, et al., “Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals,” ACS Nano 10 (2016): 2071–2081.

[22]

D. D. Blach, V. A. Lumsargis, D. E. Clark, et al., “Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices,” Nano Letters 22 (2022): 7811–7818.

[23]

D. Baranov, S. Toso, M. Imran, and L. Manna, “Investigation into the Photoluminescence Red Shift in Cesium Lead Bromide Nanocrystal Superlattices,” Journal of Physical Chemistry Letters 10 (2019): 655–660.

[24]

Y. Tong, E. P. Yao, A. Manzi, et al., “Spontaneous Self-Assembly of Perovskite Nanocrystals Into Electronically Coupled Supercrystals: Toward Filling the Green Gap,” Advanced Materials 30 (2018): e1801117.

[25]

F. Krieg, P. C. Sercel, M. Burian, et al., “Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr3 Nanocrystals and Their Superfluorescent Assemblies,” ACS Central Science 7 (2021): 135–144.

[26]

C. Zhou, Y. Zhong, H. Dong, et al., “Cooperative Excitonic Quantum Ensemble in Perovskite-Assembly Superlattice Microcavities,” Nature Communications 11 (2020): 329.

[27]

F. Mattiotti, M. Kuno, F. Borgonovi, B. Jankó, and G. L. Celardo, “Thermal Decoherence of Superradiance in Lead Halide Perovskite Nanocrystal Superlattices,” Nano Letters 20 (2020): 7382–7388.

[28]

J. Jagielski, S. F. Solari, L. Jordan, et al., “Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices,” Nature Communications 11 (2020): 387.

[29]

S. Kumar, T. Marcato, F. Krumeich, Y. T. Li, Y. C. Chiu, and C. J. Shih, “Anisotropic Nanocrystal Superlattices Overcoming Intrinsic Light Outcoupling Efficiency Limit in Perovskite Quantum Dot Light-Emitting Diodes,” Nature Communications 13 (2022): 2106.

[30]

C. Bi, J. Hu, Z. Yao, et al., “Self-Assembled Perovskite Nanowire Clusters for High Luminance Red Light-Emitting Diodes,” Advanced Functional Materials 30 (2020): 2005990.

[31]

M. Imran, V. Caligiuri, M. Wang, et al., “Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals,” Journal of the American Chemical Society 140 (2018): 2656–2664.

[32]

S. Toso, D. Baranov, U. Filippi, C. Giannini, and L. Manna, “Collective Diffraction Effects in Perovskite Nanocrystal Superlattices,” Accounts of Chemical Research 56 (2023): 66–76.

[33]

S. Toso, D. Baranov, C. Giannini, S. Marras, and L. Manna, “Wide-Angle X-Ray Diffraction Evidence of Structural Coherence in CsPbBr3 Nanocrystal Superlattices,” ACS Materials Letters 1 (2019): 272–276.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/