Engineered Living Energy Materials

Xinyi Yuan , Haiyi Xu , Xingwu Liu , Jicong Zhang , Jing Li , Qianyi Liang , Bolin An , Giuseppe Maria Paternò , Minyue Zhang , Yuqing Tang , Chen Zhang , Dake Xu , Chao Zhong , Ke Li , Xinyu Wang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 412 -455.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 412 -455. DOI: 10.1002/idm2.12245
REVIEW

Engineered Living Energy Materials

Author information +
History +
PDF

Abstract

To foster sustainable development, a pivotal trend lies in harnessing sustainable energy supplies that propel modern economic and societal progress. Recent advancements in living materials for energy applications have sparked a groundbreaking research area: engineered living energy materials (ELEMs), which seamlessly integrate biological and artificial systems for efficient energy conversion and storage. To consolidate and propel this research area, herein, we summarize and delve into the evolution of ELEMs. Firstly, we provide an overview of the structural features and energy conversion mechanisms employed by bio-modules spanning proteins, organelles, and entire organisms. They can be directly used as components for constructing ELEMs or provide inspirations for the design of such entities. Then, we comprehensively review the latest research strides in ELEMs based on their distinct energy conversion modes. Finally, we discuss the challenges confronting ELEMs and envision their future trajectories. The progress of ELEMs holds immense potential to catalyze interdisciplinary research endeavors encompassing medicine, environmental science, and energy technologies.

Keywords

bio-modules / clean energy / engineered living energy materials / materials synthetic biology / sustainable development / sustainable energy conversion

Cite this article

Download citation ▾
Xinyi Yuan, Haiyi Xu, Xingwu Liu, Jicong Zhang, Jing Li, Qianyi Liang, Bolin An, Giuseppe Maria Paternò, Minyue Zhang, Yuqing Tang, Chen Zhang, Dake Xu, Chao Zhong, Ke Li, Xinyu Wang. Engineered Living Energy Materials. Interdisciplinary Materials, 2025, 4(3): 412-455 DOI:10.1002/idm2.12245

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IEA, Global Energy Crisis IEA. 2022, https://www.iea.org/topics/global-energy-crisis.

[2]

IEA, World Energy Outlook. 2022, https://www.iea.org/reports/world-energy-outlook-2022.

[3]

S. Yang, D. Yang, W. Shi, C. Deng, C. Chen, and S. Feng, “Global Evaluation of Carbon Neutrality and Peak Carbon Dioxide Emissions: Current Challenges and Future Outlook,” Environmental Science and Pollution Research 30, no. 34 (2022): 81725-81744.

[4]

G. M. Huebner, C. Hanmer, E. Zapata-Webborn, et al., “Self-Reported Energy Use Behaviour Changed Significantly During the Cost-of-Living Crisis in Winter 2022/23: Insights From Cross-Sectional and Longitudinal Surveys in Great Britain,” Scientific Reports 13, no. 1 (2023): 21683.

[5]

K. Calvin, A. Cowie, G. Berndes, et al., “Bioenergy for Climate Change Mitigation: Scale and Sustainability,” GCB Bioenergy 13, no. 9 (2021): 1346-1371.

[6]

Nations TU. Department of Economic and Social Affairs. 2023, https://sdgs.un.org/goals.

[7]

B. An, Y. Wang, Y. Huang, et al., “Engineered Living Materials for Sustainability,” Chemical Reviews 123, no. 5 (2022): 2349-2419.

[8]

T.-C. Tang, B. An, Y. Huang, et al., “Materials Design by Synthetic Biology,” Nature Reviews Materials 6, no. 4 (2020): 332-350.

[9]

C. Gilbert, T.-C. Tang, W. Ott, et al., “Living Materials With Programmable Functionalities Grown From Engineered Microbial Co-Cultures,” Nature Materials 20, no. 5 (2021): 691-700.

[10]

X. Wang, S. Zhang, J. Zhang, et al., “Rational Design of Functional Amyloid Fibrillar Assemblies,” Chemical Society Reviews 52, no. 14 (2023): 4603-4631.

[11]

S. R. Peyton, L. W. Chow, S. D. Finley, et al., “Synthetic Living Materials in Cancer Biology,” Nature Reviews Bioengineering 1, no. 12 (2023): 972-988.

[12]

J. Huang, S. Liu, C. Zhang, et al., “Programmable and Printable Bacillus subtilis Biofilms as Engineered Living Materials,” Nature Chemical Biology 15, no. 1 (2018): 34-41.

[13]

J. Pu, Y. Liu, J. Zhang, et al., “Virus Disinfection From Environmental Water Sources Using Living Engineered Biofilm Materials,” Advanced Science 7, no. 14 (2020): 1903558.

[14]

Y. Wang, B. An, B. Xue, et al., “Living Materials Fabricated via Gradient Mineralization of Light-Inducible Biofilms,” Nature Chemical Biology 17, no. 3 (2020): 351-359.

[15]

A. M. Duraj-Thatte, A. Manjula-Basavanna, J. Rutledge, et al., “Programmable Microbial Ink for 3D Printing of Living Materials Produced From Genetically Engineered Protein Nanofibers,” Nature Communications 12, no. 1 (2021): 6600.

[16]

B. An, Y. Wang, X. Jiang, et al., “Programming Living Glue Systems to Perform Autonomous Mechanical Repairs,” Matter 3, no. 6 (2020): 2080-2092.

[17]

F. Zamberlan, “Red Light Is ‘Go!’ for Protein Labelling,” Nature Catalysis 7 (2024): 1.

[18]

B. Cao, Z. Zhao, L. Peng, et al., “Silver Nanoparticles Boost Charge-Extraction Efficiency in Shewanella Microbial Fuel Cells,” Science 373, no. 6561 (2021): 1336-1340.

[19]

X. Chen, J. M. Lawrence, L. T. Wey, et al., “3D-printed Hierarchical Pillar Array Electrodes for High-Performance Semi-Artificial Photosynthesis,” Nature Materials 21, no. 7 (2022): 811-818.

[20]

M. Patrian, M. Nieddu, J. A. Banda-Vázquez, et al., “Genetically Encoded Oligomerization for Protein-Based Lighting Devices,” Advanced Materials 35, no. 48 (2023): 2303993.

[21]

A. Bar-Zion, A. Nourmahnad, D. R. Mittelstein, et al., “Acoustically Triggered Mechanotherapy Using Genetically Encoded Gas Vesicles,” Nature Nanotechnology 16, no. 12 (2021): 1403-1412.

[22]

Y. D. Zhen-Ping Zou, Y. Z. Ting-Ting Fang, and B.-C. Ye, “Biomarker-Responsive Engineered Probiotic Diagnoses, Records, and Ameliorates Inflammatory Bowel Disease in Mice,” Cell Host & Microbe 31, no. 2 (2022): 199-212.

[23]

G. Vizsnyiczai, G. Frangipane, C. Maggi, F. Saglimbeni, S. Bianchi, and R. Di Leonardo, “Light Controlled 3D Micromotors Powered by Bacteria,” Nature Communications 8 (2017): 15974.

[24]

M. C. Potter, “Electrical Effects Accompanying the Decomposition of Organic Compounds,” Proceedings of the Royal Society of London B 84 (1911): 571.

[25]

B. Cohen, “The Bacterial Culture as an Electrical Half-Cell,” Journal of Bacteriology 21, no. 1 (1931): 18-19.

[26]

J. B. Davis and H. F. Yarbrough, “Preliminary Experiments on a Microbial Fuel Cell,” Science 137 (1962): 615-616.

[27]

A. Fraiwan, S. Mukherjee, S. Sundermier, H. S. Lee, and S. Choi, “A Paper-Based Microbial Fuel Cell: Instant Battery for Disposable Diagnostic Devices,” Biosensors and Bioelectronics 49 (2013): 410-414.

[28]

K. K. Sakimoto, A. B. Wong, and P. Yang, “Self-Photosensitization of Nonphotosynthetic Bacteria for Solar-to-Chemical Production,” Science 351 (2016): 74-77.

[29]

T. Schwander, L. Schada von Borzyskowski, S. Burgener, N. S. Cortina, and T. J. Erb, “A Synthetic Pathway for the Fixation of Carbon Dioxide In Vitro,” Science 354, no. 6314 (2016): 900-904.

[30]

R. Ohlendorf, R. R. Vidavski, A. Eldar, K. Moffat, and A. Möglich, “From Dusk Till Dawn: One-Plasmid Systems for Light-Regulated Gene Expression,” Journal of Molecular Biology 416, no. 4 (2012): 534-542.

[31]

C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, and D. G. Nocera, “Water Splitting-Biosynthetic System With CO2 Reduction Efficiencies Exceeding Photosynthesis,” Science 352, no. 6290 (2016): 1210-1213.

[32]

H. Li, P. H. Opgenorth, D. G. Wernick, et al., “Integrated Electromicrobial Conversion of CO2 to Higher Alcohols,” Science 335, no. 6076 (2012): 1596.

[33]

O. Felfoul, M. Mohammadi, S. Taherkhani, et al., “Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions,” Nature Nanotechnology 11, no. 11 (2016): 941-947.

[34]

M. G. Shapiro, P. W. Goodwill, A. Neogy, et al., “Biogenic Gas Nanostructures as Ultrasonic Molecular Reporters,” Nature Nanotechnology 9, no. 4 (2014): 311-316.

[35]

Y. Pan, S. Yoon, J. Sun, et al., “Mechanogenetics for the Remote and Noninvasive Control of Cancer Immunotherapy,” Proceedings of the National Academy of Sciences 115, no. 5 (2018): 992-997.

[36]

T. Mitiouchkina, A. S. Mishin, L. G. Somermeyer, et al., “Plants With Genetically Encoded Autoluminescence,” Nature Biotechnology 38, no. 8 (2020): 944-946.

[37]

X. Liu, H. Gao, J. E. Ward, et al., “Power Generation From Ambient Humidity Using Protein Nanowires,” Nature 578, no. 7796 (2020): 550-554.

[38]

M. Titirici, S. G. Baird, T. D. Sparks, et al., “The Sustainable Materials Roadmap,” Journal of Physics: Materials 5, no. 3 (2022): 032001.

[39]

X. Liu, T.-C. Tang, E. Tham, et al., “Stretchable Living Materials and Devices With Hydrogel-Elastomer Hybrids Hosting Programmed Cells,” Proceedings of the National Academy of Sciences 114, no. 9 (2017): 2200-2205.

[40]

M. E. Inda-Webb, M. Jimenez, Q. Liu, et al., “Sub-1.4 Cm(3) Capsule for Detecting Labile Inflammatory Biomarkers In Situ,” Nature 620, no. 7973 (2023): 386-392.

[41]

S. Moreno-Gámez, “How Bacteria Navigate Varying Environments,” Science 378, no. 6622 (2022): 845.

[42]

Y. Wang, Q. Zhang, C. Ge, B. An, and C. Zhong, “Programmable Bacterial Biofilms as Engineered Living Materials,” Accounts of Materials Research 5 (2024): 797-808.

[43]

A. Rodrigo-Navarro, S. Sankaran, M. J. Dalby, A. del Campo, and M. Salmeron-Sanchez, “Engineered Living Biomaterials,” Nature Reviews Materials 6, no. 12 (2021): 1175-1190.

[44]

P. Q. Nguyen, N. M. D. Courchesne, A. Duraj-Thatte, P. Praveschotinunt, and N. S. Joshi, “Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials,” Advanced Materials 30, no. 19 (2018): 1704847.

[45]

A. J. Slate, K. A. Whitehead, D. A. C. Brownson, and C. E. Banks, “Microbial Fuel Cells: An Overview of Current Technology,” Renewable and Sustainable Energy Reviews 101 (2019): 60-81.

[46]

J. Zhang, F. Li, D. Liu, Q. Liu, and H. Song, “Engineering Extracellular Electron Transfer Pathways of Electroactive Microorganisms by Synthetic Biology for Energy and Chemicals Production,” Chemical Society Reviews 53, no. 3 (2024): 1375-1446.

[47]

Z. J. Ren, “Microbial Fuel Cells: Running on Gas,” Nature Energy 2, no. 6 (2017): 17093.

[48]

J. Sun, R. Yang, Q. Li, et al., “Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology,” Advanced Materials (2024): 2400110.

[49]

V. Nair, A. N. Dalrymple, Z. Yu, et al., “Miniature Battery-Free Bioelectronics,” Science 382, no. 6671 (2023): eabn4732.

[50]

S. Lee, X. Liang, J. S. Kim, T. Yokota, K. Fukuda, and T. Someya, “Permeable Bioelectronics Toward Biointegrated Systems,” Chemical Reviews 124, no. 10 (2024): 6543-6591.

[51]

B. Park, C. Jeong, J. Ok, and T. Kim, “Materials and Structural Designs Toward Motion Artifact-Free Bioelectronics,” Chemical Reviews 124, no. 10 (2024): 6148-6197.

[52]

Y. Wang, Y. Liu, J. Li, Y. Chen, S. Liu, and C. Zhong, “Engineered Living Materials (ELMs) Design: From Function Allocation to Dynamic Behavior Modulation,” Current Opinion in Chemical Biology 70 (2022): 102188.

[53]

A. Cubillos-Ruiz, T. Guo, A. Sokolovska, et al., “Engineering Living Therapeutics With Synthetic Biology,” Nature Reviews Drug Discovery 20, no. 12 (2021): 941-960.

[54]

A. Samanta, L. Baranda Pellejero, M. Masukawa, and A. Walther, “Dna-Empowered Synthetic Cells as Minimalistic Life Forms,” Nature Reviews Chemistry 8 (2024): 454-470.

[55]

T. Cai, H. Sun, J. Qiao, et al., “Cell-Free Chemoenzymatic Starch Synthesis From Carbon Dioxide,” Science 373, no. 6562 (2021): 1523-1527.

[56]

X. Wang, J. Zhang, K. Li, B. An, Y. Wang, and C. Zhong, “Photocatalyst-Mineralized Biofilms as Living Bio-Abiotic Interfaces for Single Enzyme to Whole-Cell Photocatalytic Applications,” Science Advances 8 (2022): eabm7665.

[57]

B. Zhang, W. Xu, L. Peng, Y. Li, W. Zhang, and Z. Wang, “Nature-Inspired Interfacial Engineering for Energy Harvesting,” Nature Reviews Electrical Engineering 1, no. 4 (2024): 218-233.

[58]

M. Occ and U. Aj, Essentials of Cell Biology. NPG Education, 2010.

[59]

D. F. Gruber, E. R. Loew, D. D. Deheyn, et al., “Biofluorescence in Catsharks (Scyliorhinidae): Fundamental Description and Relevance for Elasmobranch Visual Ecology,” Scientific Reports 6, no. 1 (2016): 24751.

[60]

S. J. Remington, “Fluorescent Proteins: Maturation, Photochemistry and Photophysics,” Current Opinion in Structural Biology 16, no. 6 (2006): 714-721.

[61]

D. P. Barondeau, C. D. Putnam, C. J. Kassmann, J. A. Tainer, and E. D. Getzoff, “Mechanism and Energetics of Green Fluorescentprotein Chromophore Synthesis Revealed Bytrapped Intermediate Structures,” Proceedings of the National Academy of Sciences 121, no. 11 (2003): 1211-12116.

[62]

T. D. Craggs, “Green Fluorescent Protein: Structure, Folding and Chromophore Maturation,” Chemical Society Reviews 38, no. 10 (2009): 2865.

[63]

V. Sample, R. H. Newman, and J. Zhang, “The Structure and Function of Fluorescent Proteins,” Chemical Society Reviews 38, no. 10 (2009): 2852.

[64]

C. Lee, H. Shin, and J. Kimble, “Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context,” Developmental Cell 50, no. 4 (2019): 426-435.e4.

[65]

S. Son, K. Nagahama, J. Lee, et al., “Real-Time Visualization of Structural Dynamics of Synapses in Live Cells In Vivo,” Nature Methods 21, no. 2 (2024): 353-360.

[66]

P. García Casas, M. Rossini, L. Påvénius, et al., “Simultaneous Detection of Membrane Contact Dynamics and Associated Ca2+ Signals by Reversible Chemogenetic Reporters,” Nature Communications 15, no. 1 (2024): 9775.

[67]

F. Deng, J. Wan, G. Li, et al., “Improved Green and Red Grab Sensors for Monitoring Spatiotemporal Serotonin Release In Vivo,” Nature Methods 21, no. 4 (2024): 692-702.

[68]

E. Tchekanda, D. Sivanesan, and S. W. Michnick, “An Infrared Reporter to Detect Spatiotemporal Dynamics of Protein-Protein Interactions,” Nature Methods 11, no. 6 (2014): 641-644.

[69]

M. Hirano, R. Ando, S. Shimozono, et al., “A Highly Photostable and Bright Green Fluorescent Protein,” Nature Biotechnology 40, no. 7 (2022): 1132-1142.

[70]

L. Wang, C. Wu, W. Peng, et al., “A High-Performance Genetically Encoded Fluorescent Indicator for In Vivo cAMP Imaging,” Nature Communications 13, no. 1 (2022): 5363.

[71]

F. Wang, H. Shi, R. He, R. Wang, R. Zhang, and J. Yuan, “Non-Equilibrium Effect in the Allosteric Regulation of the Bacterial Flagellar Switch,” Nature Physics 13, no. 7 (2017): 710-714.

[72]

S. Kim, H. Jo, M. Jeon, M.-G. Choi, S. K. Hahn, and S.-H. Yun, “Luciferase-Rose Bengal Conjugates for Singlet Oxygen Generation by Bioluminescence Resonance Energy Transfer,” Chemical Communications 53, no. 33 (2017): 4569-4572.

[73]

F. McCapra, “Chemical Mechanisms in Bioluminescence,” Accounts of Chemical Research 9 (1976): 201-208.

[74]

J. Zhao, S. Lin, Y. Huang, J. Zhao, and P. R. Chen, “Mechanism-Based Design of a Photoactivatable Firefly Luciferase,” Journal of the American Chemical Society 135, no. 20 (2013): 7410-7413.

[75]

S. Inouye, “Firefly Luciferase: An Adenylate-Forming Enzyme for Multicatalytic Functions,” Cellular and Molecular Life Sciences 67, no. 3 (2009): 387-404.

[76]

A. Schenkmayerova, M. Toul, D. Pluskal, et al., “Catalytic Mechanism for Renilla-Type Luciferases,” Nature Catalysis 6, no. 1 (2023): 23-38.

[77]

A. J. Syed and J. C. Anderson, “Applications of Bioluminescence in Biotechnology and Beyond,” Chemical Society Reviews 50, no. 9 (2021): 5668-5705.

[78]

G. Kagiya, A. Sato, R. Ogawa, et al., “Real-Time Visualization of Intratumoral Necrosis Using Split-Luciferase Reconstitution by Protein Trans-Splicing,” Molecular Therapy-Oncolytics 20 (2021): 48-58.

[79]

H.-W. Yeh, O. Karmach, A. Ji, D. Carter, M. M. Martins-Green, and H. Ai, “Red-Shifted Luciferase-Luciferin Pairs for Enhanced Bioluminescence Imaging,” Nature Methods 14, no. 10 (2017): 971-974.

[80]

T. Danino, A. Prindle, G. A. Kwong, et al., “Programmable Probiotics for Detection of Cancer in Urine,” Science Translational Medicine 7, no. 289 (2015): 289ra84.

[81]

Y. Su, J. R. Walker, Y. Park, et al., “Novel NanoLuc Substrates Enable Bright Two-Population Bioluminescence Imaging in Animals,” Nature Methods 17, no. 8 (2020): 852-860.

[82]

A. H. W. Yeh, C. Norn, Y. Kipnis, et al., “De Novo Design of Luciferases Using Deep Learning,” Nature 614, no. 7949 (2023): 774-780.

[83]

X. Zhang, C. Erb, J. Flammer, and W. M. Nau, “Absolute Rate Constants for the Quenching of Reactive Excited States by Melanin and Related 5,6-dihydroxyindole Metabolites: Implications for Their Antioxidant Activity,” Photochemistry and Photobiology 71, no. 5 (2007): 524-533.

[84]

U. Perez-Cuesta, L. Aparicio-Fernandez, X. Guruceaga, et al., “Melanin and Pyomelanin in Aspergillus fumigatus: From Its Genetics to Host Interaction,” International Microbiology 23, no. 1 (2019): 55-63.

[85]

R. J. B. Cordero and A. Casadevall, “Melanin,” Current Biology 30, no. 4 (2020): R142-R143.

[86]

L. Guo, W. Li, Z. Gu, et al., “Recent Advances and Progress on Melanin: From Source to Application,” International Journal of Molecular Sciences 24, no. 5 (2023): 4360.

[87]

W. Cao, X. Zhou, N. C. McCallum, et al., “Unraveling the Structure and Function of Melanin Through Synthesis,” Journal of the American Chemical Society 143, no. 7 (2021): 2622-2637.

[88]

M. d'Ischia, K. Wakamatsu, A. Napolitano, et al., “Melanins and Melanogenesis: Methods, Standards, Protocols,” Pigment Cell & Melanoma Research 26, no. 5 (2013): 616-633.

[89]

K. Tsukamoto, A. Palumbo, M. D'Ischia, V. J. Hearing, and G. Prota, “5,6-Dihydroxyindole-2-carboxylic Acid Is Incorporated in Mammalian Melanin,” Biochemical Journal 286 (1992): 491-495.

[90]

M. d'Ischia, A. Napolitano, A. Pezzella, P. Meredith, and M. Buehler, “Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design,” Angewandte Chemie International Edition 59, no. 28 (2020): 11196-11205.

[91]

L. Panzella, G. Gentile, G. D'Errico, et al., “Atypical Structural and π-electron Features of a Melanin Polymer That Lead to Superior Free-Radical-Scavenging Properties,” Angewandte Chemie International Edition 52, no. 48 (2013): 12684-12687.

[92]

K. T. Walker, I. S. Li, J. Keane, et al., “Self-Pigmenting Textiles Grown From Cellulose-Producing Bacteria With Engineered Tyrosinase Expression,” Nature Biotechnology 43 (2024): 345-354.

[93]

K. Li, Z. Wei, J. Jia, et al., “Engineered Living Materials Grown From Programmable Aspergillus niger Mycelial Pellets,” Materials Today Bio 19 (2023): 100545.

[94]

M. R. Binelli, A. Kan, L. E. A. Rozas, G. Pisaturo, N. Prakash, and A. R. Studart, “Complex Living Materials Made by Light-Based Printing of Genetically Programmed Bacteria,” Advanced Materials 35, no. 6 (2022): 2207483.

[95]

Z. Wei, S. Zhao, W. Li, et al., “Artificial Photosynthesis of H2O2 Through Reversible Photoredox Transformation Between Catechol and O-Benzoquinone on Polydopamine-Coated CdS,” ACS Catalysis 12, no. 18 (2022): 11436-11443.

[96]

Z. Y. Ma, D. Y. Li, X. Jia, R. L. Wang, and M. F. Zhu, “Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy,” Chinese Journal of Polymer Science 41, no. 5 (2023): 699-712.

[97]

Z. Jin, L. Yang, S. Shi, et al., “Flexible Polydopamine Bioelectronics,” Advanced Functional Materials 31, no. 30 (2021): 2103391.

[98]

D. X. Sun, X. L. Liao, N. Zhang, et al., “Biomimetic Modification of Super-Wetting Electrospun Poly(Vinylidene Fluoride) Porous Fibers With Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment,” Chinese Journal of Polymer Science 40, no. 7 (2022): 738-753.

[99]

W. Song, H. Yang, S. Liu, et al., “Melanin: Insights Into Structure, Analysis, and Biological Activities for Future Development,” Journal of Materials Chemistry B 11, no. 32 (2023): 7528-7543.

[100]

S. Prabhulkar, H. Tian, X. Wang, J.-J. Zhu, and C.-Z. Li, “Engineered Proteins: Redox Properties and Their Applications,” Antioxidants & Redox Signaling 17, no. 12 (2012): 1796-1822.

[101]

A. Ruff, F. Conzuelo, and W. Schuhmann, “Bioelectrocatalysis as the Basis for the Design of Enzyme-Based Biofuel Cells and Semi-Artificial Biophotoelectrodes,” Nature Catalysis 3, no. 3 (2019): 214-224.

[102]

H. Chen, F. Dong, and S. D. Minteer, “The Progress and Outlook of Bioelectrocatalysis for the Production of Chemicals, Fuels and Materials,” Nature Catalysis 3, no. 3 (2020): 225-244.

[103]

R. D. Milton and S. D. Minteer, “Direct Enzymatic Bioelectrocatalysis: Differentiating Between Myth and Reality,” Journal of the Royal Society Interface 14, no. 131 (2017): 20170253.

[104]

C. Greening, P. R. Cabotaje, L. E. Valentin Alvarado, et al., “Minimal and Hybrid Hydrogenases Are Active From Archaea,” Cell 187, no. 13 (2024): 3357-3372.e19.

[105]

K. Min, M. Moon, G. W. Park, J.-P. Lee, S. J. Kim, and J.-S. Lee, “Newly Explored Formate Dehydrogenases From Clostridium Species Catalyze Carbon Dioxide to Formate,” Bioresource Technology 348 (2022): 126832.

[106]

Y. Amao, “Formate Dehydrogenase for CO2 Utilization and Its Application,” Journal of CO2 Utilization 26 (2018): 623-641.

[107]

W. E. Robinson, A. Bassegoda, E. Reisner, and J. Hirst, “Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase,” Journal of the American Chemical Society 139, no. 29 (2017): 9927-9936.

[108]

L. B. Maia, I. Moura, and J. J. G. Moura, “Molybdenum and Tungsten-Containing Formate Dehydrogenases: Aiming to Inspire a Catalyst for Carbon Dioxide Utilization,” Inorganica Chimica Acta 455 (2017): 350-363.

[109]

J. Lee, S. M. Kim, B. W. Jeon, et al., “Molar-Scale Formate Production via Enzymatic Hydration of Industrial Off-Gases,” Nature Chemical Engineering 1, no. 5 (2024): 354-364.

[110]

E. E. V. Bezirtzoglou, “Intestinal Cytochromes P450 Regulating the Intestinal Microbiota and Its Probiotic Profile,” Microbial Ecology in Health & Disease 23, (2012): 18370.

[111]

B. Hu, X. Zhao, E. Wang, et al., “Efficient Heterologous Expression of Cytochrome P450 Enzymes in Microorganisms for the Biosynthesis of Natural Products,” Critical Reviews in Biotechnology 43, no. 2 (2022): 227-241.

[112]

B. Gilani and M. Cassagnol, Biochemistry, Cytochrome P450. National Center for Biotechnology Information, 2023.

[113]

Q. Wang, X. Liu, H. Zhang, et al., “Cytochrome P450 Enzyme Design by Constraining the Catalytic Pocket in a Diffusion Model,” Research; a Journal of Science and Its Applications 7 (2024): 0413.

[114]

A. W. Munro, K. J. McLean, J. L. Grant, and T. M. Makris, “Structure and Function of the Cytochrome P450 Peroxygenase Enzymes,” Biochemical Society Transactions 46, no. 1 (2018): 183-196.

[115]

U. Bathe and A. Tissier, “Cytochrome P450 Enzymes: A Driving Force of Plant Diterpene Diversity,” Phytochemistry 161 (2019): 149-162.

[116]

G. A. M. Hutton, B. Reuillard, B. C. M. Martindale, et al., “Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis With Redox Enzymes,” Journal of the American Chemical Society 138, no. 51 (2016): 16722-16730.

[117]

M. Kizling, M. Dzwonek, A. Więckowska, K. Stolarczyk, and R. Bilewicz, “Biosupercapacitor With an Enzymatic Cascade at the Anode Working in a Sucrose Solution,” Biosensors and Bioelectronics 186 (2021): 113248.

[118]

Á. Otero-Sobrino, P. Blanco-Carlón, M. Á. Navarro-Aguadero, M. Gallardo, J. Martínez-López, and M. Velasco-Estévez, “Mechanosensitive Ion Channels: Their Physiological Importance and Potential Key Role in Cancer,” International Journal of Molecular Sciences 24, no. 18 (2023): 13710.

[119]

C. D. Cox, N. Bavi, and B. Martinac, “Bacterial Mechanosensors,” Annual Review of Physiology 80, no. 1 (2018): 71-93.

[120]

P. Jin, L. Y. Jan, and Y.-N. Jan, “Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms,” Annual Review of Neuroscience 43, no. 1 (2020): 207-229.

[121]

B. Xiao, “Mechanisms of Mechanotransduction and Physiological Roles of PIEZO Channels,” Nature Reviews Molecular Cell Biology 25, no. 11 (2024): 886-903.

[122]

N. Rashidi, N. S. Harasymowicz, A. Savadipour, et al., “PIEZO1-mediated Mechanotransduction Regulates Collagen Synthesis on Nanostructured 2D and 3D Models of Fibrosis,” Acta Biomaterialia (2024): 242-254.

[123]

L. Tao, S. Coakley, R. Shi, and K. Shen, “Dendrites Use Mechanosensitive Channels to Proofread Ligand-Mediated Neurite Extension During Morphogenesis,” Developmental Cell 57, no. 13 (2022): 1615-1629.e3.

[124]

P. Blount and I. Iscla, “Life With Bacterial Mechanosensitive Channels, From Discovery to Physiology to Pharmacological Target,” Microbiology and Molecular Biology Reviews 84, no. 1 (2020): e00055-19.

[125]

J. Wang and P. Blount, “Feeling the Tension: The Bacterial Mechanosensitive Channel of Large Conductance as a Model System and Drug Target,” Current Opinion in Physiology 31 (2023): 100627.

[126]

L. Qin, T. He, S. Chen, et al., “Roles of Mechanosensitive Channel Piezo1/2 Proteins in Skeleton and Other Tissues,” Bone Research 9, no. 1 (2021): 44.

[127]

J. Lee, A. J. H. Cabrera, C. M. T. Nguyen, and Y. V. Kwon, “Dissemination of RasV12-transformed Cells Requires the Mechanosensitive Channel Piezo,” Nature Communications 11, no. 1 (2020): 3568.

[128]

C. D. Cox, N. Bavi, and B. Martinac, “Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction,” Cell Reports 29, no. 1 (2019): 1-12.

[129]

S. Li, B. Li, L. Gao, J. Wang, and Z. Yan, “Humidity Response in Drosophila Olfactory Sensory Neurons Requires the Mechanosensitive Channel TMEM63,” Nature Communications 13, no. 1 (2022): 3814.

[130]

R. Iino, K. Kinbara, and Z. Bryant, “Introduction: Molecular Motors,” Chemical Reviews 120, no. 1 (2020): 1-4.

[131]

D. Dattler, G. Fuks, J. Heiser, et al., “Design of Collective Motions From Synthetic Molecular Switches, Rotors, and Motors,” Chemical Reviews 120, no. 1 (2019): 310-433.

[132]

J. A. Spudich, “The Myosin Swinging Cross-Bridge Model,” Nature Reviews Molecular Cell Biology 2, no. 5 (2001): 387-392.

[133]

N. Hirokawa, Y. Noda, Y. Tanaka, and S. Niwa, “Kinesin Superfamily Motor Proteins and Intracellular Transport,” Nature Reviews Molecular Cell Biology 10, no. 10 (2009): 682-696.

[134]

A. J. Roberts, T. Kon, P. J. Knight, K. Sutoh, and S. A. Burgess, “Functions and Mechanics of Dynein Motor Proteins,” Nature Reviews Molecular Cell Biology 14, no. 11 (2013): 713-726.

[135]

T. Yamaguchi, F. Makino, T. Miyata, T. Minamino, T. Kato, and K. Namba, “Structure of the Molecular Bushing of the Bacterial Flagellar Motor,” Nature Communications 12, no. 1 (2021): 4469.

[136]

M. Forgac, “Vacuolar ATPases: Rotary Proton Pumps in Physiology and Pathophysiology,” Nature Reviews Molecular Cell Biology 8, no. 11 (2007): 917-929.

[137]

M. Yoshida, E. Muneyuki, and T. Hisabori, “ATP Synthase—A Marvellous Rotary Engine of the Cell,” Nature Reviews Molecular Cell Biology 2, no. 9 (2001): 669-677.

[138]

M. J. Schnitzer and S. M. Block, “Kinesin Hydrolyses One ATP Per 8-nm Step,” Nature 388 (1997): 386-390.

[139]

H. Hess, G. D. Bachand, and V. Vogel, “Powering Nanodevices With Biomolecular Motors,” Chemistry—A European Journal 10, no. 9 (2004): 2110-2116.

[140]

T. J. Stewart, V. Murthy, S. P. Dugan, and J. E. Baker, “Velocity of Myosin-Based Actin Sliding Depends on Attachment and Detachment Kinetics and Reaches a Maximum When Myosin-Binding Sites on Actin Saturate,” Journal of Biological Chemistry 297, no. 5 (2021): 101178.

[141]

D. Dutta, V. Nguyen, K. S. Campbell, R. Padrón, and R. Craig, “Cryo-EM Structure of the Human Cardiac Myosin Filament,” Nature 623, no. 7988 (2023): 853-862.

[142]

S. Nath, “The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation,” Biophysical Chemistry 219 (2016): 69-74.

[143]

M. Li, Y. Li, L. Jia, et al., “The Classification and Therapeutic Applications of Molecular Motors,” European Journal of Medicinal Chemistry Reports 3 (2021): 100009.

[144]

N. Mnatsakanyan and E. A. Jonas, “The New Role of F1FO ATP Synthase in Mitochondria-Mediated Neurodegeneration and Neuroprotection,” Experimental Neurology 332 (2020): 113400.

[145]

F. Chen, R. Kang, J. Liu, and D. Tang, “The V-ATPases in Cancer and Cell Death,” Cancer Gene Therapy 29, no. 11 (2022): 1529-1541.

[146]

H. Ueno, K. Suzuki, and T. Murata, “Structure and Dynamics of Rotary V1 Motor,” Cellular and Molecular Life Sciences 75, no. 10 (2018): 1789-1802.

[147]

M. T. Mazhab-Jafari, A. Rohou, C. Schmidt, et al., “Atomic Model for the Membrane-Embedded VO Motor of a Eukaryotic V-ATPase,” Nature 539, no. 7627 (2016): 118-122.

[148]

Y. Chang, B. L. Carroll, and J. Liu, “Structural Basis of Bacterial Flagellar Motor Rotation and Switching,” Trends in Microbiology 29, no. 11 (2021): 1024-1033.

[149]

M. Santiveri, A. Roa-Eguiara, C. Kühne, et al., “Structure and Function of Stator Units of the Bacterial Flagellar Motor,” Cell 183, no. 1 (2020): 244-257.e16.

[150]

P. K. Singh, P. Sharma, O. Afanzar, et al., “CryoEM Structures Reveal How the Bacterial Flagellum Rotates and Switches Direction,” Nature Microbiology 9, no. 5 (2024): 1271-1281.

[151]

S. Johnson, E. J. Furlong, J. C. Deme, et al., “Molecular Structure of the Intact Bacterial Flagellar Basal Body,” Nature Microbiology 6, no. 6 (2021): 712-721.

[152]

M. Akter, J. J. Keya, K. Kayano, et al., “Cooperative Cargo Transportation by Aswarm of Molecular Machines,” Science Robotics 7 (2022): eabm0677.

[153]

V. Zimorski, C. Ku, W. F. Martin, and S. B. Gould, “Endosymbiotic Theory for Organelle Origins,” Current Opinion in Microbiology 22 (2014): 38-48.

[154]

A. Lakshmanan, Z. Jin, S. P. Nety, et al., “Acoustic Biosensors for Ultrasound Imaging of Enzyme Activity,” Nature Chemical Biology 16, no. 9 (2020): 988-996.

[155]

A. Tanaka and A. Makino, “Photosynthetic Research in Plant Science,” Plant & Cell Physiology 50, no. 4 (2009): 681-683.

[156]

H. Kirchhoff, “Chloroplast Ultrastructure in Plants,” New Phytologist 223, no. 2 (2019): 565-574.

[157]

J. Cournoyer, S. D. Altman, Y. Gao, et al., “Engineering Artificial Photosynthetic Life-Forms Through Endosymbiosis,” Nature Communications 13, no. 1 (2022): 2254.

[158]

Y. Gao, J. Cournoyer, B. C. De, et al., “Introducing Carbon Assimilation in Yeasts Using Photosynthetic Directed Endosymbiosis,” Nature Communications 15, no. 1 (2024): 5947.

[159]

X.-B. Li, C.-H. Tung, and L.-Z. Wu, “Semiconducting Quantum Dots for Artificial Photosynthesis,” Nature Reviews Chemistry 2, no. 8 (2018): 160-173.

[160]

Y. Li, T. Zheng, Y. Liu, et al., “Biohybrid Organic Heterostructure Based on Chlorophyll-Bacteriochlorophyll Aggregates for Ecofriendly Hydrogen Production,” Chemistry—A European Journal 28, no. 56 (2022): e202201855.

[161]

D. Mersch, C.-Y. Lee, J. Z. Zhang, et al., “Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting,” Journal of the American Chemical Society 137, no. 26 (2015): 8541-8549.

[162]

L. M. Utschig, S. R. Soltau, K. L. Mulfort, J. Niklas, and O. G. Poluektov, “Z-Scheme Solar Water Splitting via Self-Assembly of Photosystem I-Catalyst Hybrids in Thylakoid Membranes,” Chemical Science 9, no. 45 (2018): 8504-8512.

[163]

K. Xiao, J. Liang, X. Wang, et al., “Panoramic Insights Into Semi-Artificial Photosynthesis: Origin, Development, and Future Perspective,” Energy & Environmental Science 15, no. 2 (2022): 529-549.

[164]

S. Charrasse, T. Poquillon, C. Saint-Omer, et al., “Quantitative Assessment of Mitochondrial Morphology Relevant for Studies on Cellular Health and Environmental Toxicity,” Computational and Structural Biotechnology Journal 21 (2023): 5609-5619.

[165]

L. Nie, A. C. Nusantara, V. G. Damle, et al., “Quantum Monitoring of Cellular Metabolic Activities in Single Mitochondria,” Science Advances 7, no. 21 (2021): eabf0573.

[166]

A. S. Monzel, J. A. Enríquez, and M. Picard, “Multifaceted Mitochondria: Moving Mitochondrial Science Beyond Function and Dysfunction,” Nature Metabolism 5, no. 4 (2023): 546-562.

[167]

W. Zheng, P. Chai, J. Zhu, and K. Zhang, “High-Resolution In Situ Structures of Mammalian Respiratory Supercomplexes,” Nature 631, no. 8019 (2024): 232-239.

[168]

V. Schirrmacher, “Mitochondria at Work: New Insights Into Regulation and Dysregulation of Cellular Energy Supply and Metabolism,” Biomedicines 8, no. 11 (2020): 526.

[169]

R. Blakemore, “Magnetotactic Bacteria,” Science 190, no. 4212 (1975): 377-379.

[170]

S. Kolinko, M. Richter, F. O. Glöckner, A. Brachmann, and D. Schüler, “Single-Cell Genomics of Uncultivated Deep-Branching Magnetotactic Bacteria Reveals a Conserved Set of Magnetosome Genes,” Environmental Microbiology 18, no. 1 (2015): 21-37.

[171]

C. T. Lefèvre, D. Trubitsyn, F. Abreu, et al., “Comparative Genomic Analysis of Magnetotactic Bacteria From the Deltaproteobacteria Provides New Insights Into Magnetite and Greigite Magnetosome Genes Required for Magnetotaxis,” Environmental Microbiology 15, no. 10 (2013): 2712-2735.

[172]

R. Uebe and D. Schüler, “Magnetosome Biogenesis in Magnetotactic Bacteria,” Nature Reviews Microbiology 14, no. 10 (2016): 621-637.

[173]

J. Wan, R. Ji, J. Liu, K. Ma, Y. Pan, and W. Lin, “Biomineralization in Magnetotactic Bacteria: From Diversity to Molecular Discovery-Based Applications,” Cell Reports 43, no. 12 (2024): 114995.

[174]

M. Muthana, A. J. Kennerley, R. Hughes, et al., “Directing Cell Therapy to Anatomic Target Sites In Vivo With Magnetic Resonance Targeting,” Nature Communications 6, no. 1 (2015): 8009.

[175]

Y. Zhang, X. Wang, C. Chu, et al., “Genetically Engineered Magnetic Nanocages for Cancer Magneto-Catalytic Theranostics,” Nature Communications 11, no. 1 (2020): 5421.

[176]

M. Boucher, F. Geffroy, S. Prévéral, et al., “Genetically Tailored Magnetosomes Used as MRI Probe for Molecular Imaging of Brain Tumor,” Biomaterials 121 (2017): 167-178.

[177]

F. Pfeifer, “Distribution, Formation and Regulation of Gas Vesicles,” Nature Reviews Microbiology 10, no. 10 (2012): 705-715.

[178]

S. T. Huber, D. Terwiel, W. H. Evers, D. Maresca, and A. J. Jakobi, “Cryo-EM Structure of Gas Vesicles for Buoyancy-Controlled Motility,” Cell 186, no. 5 (2023): 975-986.e13.

[179]

D. Maresca, A. Lakshmanan, A. Lee-Gosselin, et al., “Nonlinear Ultrasound Imaging of Nanoscale Acoustic Biomolecules,” Applied Physics Letters 110, no. 7 (2017): 073704.

[180]

R. C. Hurt, M. T. Buss, M. Duan, et al., “Genomically Mined Acoustic Reporter Genes for Real-Time In Vivo Monitoring of Tumors and Tumor-Homing Bacteria,” Nature Biotechnology 41, no. 7 (2023): 919-931.

[181]

L. Xie, J. Wang, L. Song, T. Jiang, and F. Yan, “Cell-Cycle Dependent Nuclear Gene Delivery Enhances the Effects of E-Cadherin Against Tumor Invasion and Metastasis,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 182.

[182]

Y. Yang, Y. Yang, D. Liu, et al., “In-Vivo Programmable Acoustic Manipulation of Genetically Engineered Bacteria,” Nature Communications 14, no. 1 (2023): 3297.

[183]

T. B. H. Schroeder, A. Guha, A. Lamoureux, et al., “An Electric-Eel-Inspired Soft Power Source From Stacked Hydrogels,” Nature 552, no. 7684 (2017): 214-218.

[184]

L. Yang, F. Yang, X. Liu, et al., “A Moisture-Enabled Fully Printable Power Source Inspired by Electric Eels,” Proceedings of the National Academy of Sciences 118, no. 16 (2021): e2023164118.

[185]

R. D. Keynes and H. Martins-Ferreira, “Membrane Potentials in the Electroplates of the Electric Eel,” Journal of Physiology 119, no. 2-3 (1953): 315-351.

[186]

X. Xiao, Y. Mei, W. Deng, G. Zou, H. Hou, and X. Ji, “Electric Eel Biomimetics for Energy Storage and Conversion,” Small Methods 8, no. 6 (2023): 2201435.

[187]

Y. Zhang, J. Riexinger, X. Yang, et al., “A Microscale Soft Ionic Power Source Modulates Neuronal Network Activity,” Nature 620, no. 7976 (2023): 1001-1006.

[188]

Y. Xiao and F. Zhao, “Electrochemical Roles of Extracellular Polymeric Substances in Biofilms,” Current Opinion in Electrochemistry 4, no. 1 (2017): 206-211.

[189]

D. R. Lovley and E. J. P. Phillips, “Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments,” Applied and Environmental Microbiology 53 (1987): 2636-2641.

[190]

Z. Xu, Y. Masuda, H. Itoh, N. Ushijima, Y. Shiratori, and K. Senoo, “Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., Four Ferric-Reducing Bacteria Isolated From Paddy Soil, and reclassification of Three Species of the Genus Geobacter as Members of the Genus Geomonas gen. nov,” Frontiers in Microbiology 10 (2019): 2201.

[191]

S. H. Light, L. Su, R. Rivera-Lugo, et al., “A Flavin-Based Extracellular Electron Transfer Mechanism in Diverse Gram-Positive Bacteria,” Nature 562, no. 7725 (2018): 140-144.

[192]

D. Emerson, E. J. Fleming, and J. M. McBeth, “Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective,” Annual Review of Microbiology 64, no. 1 (2010): 561-583.

[193]

J. Zhang, Z. You, D. Liu, et al., “Conductive Proteins-Based Extracellular Electron Transfer of Electroactive Microorganisms,” Quantitative Biology 11, no. 4 (2023): 405-420.

[194]

G. Fan, C. M. Dundas, A. J. Graham, N. A. Lynd, and B. K. Keitz, “Shewanella oneidensis as a Living Electrode for Controlled Radical Polymerization,” Proceedings of the National Academy of Sciences 115, no. 18 (2018): 4559-4564.

[195]

G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, “Extracellular Electron Transfer via Microbial Nanowires,” Nature 435, no. 7045 (2005): 1098-1101.

[196]

H. von Canstein, J. Ogawa, S. Shimizu, and J. R. Lloyd, “Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer,” Applied and Environmental Microbiology 74, no. 3 (2008): 615-623.

[197]

H. T. Ouboter, R. Mesman, T. Sleutels, et al., “Mechanisms of Extracellular Electron Transfer in Anaerobic Methanotrophic Archaea,” Nature Communications 15, no. 1 (2024): 1477.

[198]

L. Shi, J.-T. Lin, L. M. Markillie, T. C. Squier, and B. S. Hooker, “Overexpression of Multi-Heme C-Type Cytochromes,” Biotechniques 38, no. 2 (2018): 297-299.

[199]

T. Ueki, D. J. F. Walker, T. L. Woodard, K. P. Nevin, S. S. Nonnenmann, and D. R. Lovley, “An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires,” ACS Synthetic Biology 9, no. 3 (2020): 647-654.

[200]

D. Min, L. Cheng, F. Zhang, et al., “Enhancing Extracellular Electron Transfer of Shewanella oneidensis MR-1 Through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation,” Environmental Science & Technology 51, no. 9 (2017): 5082-5089.

[201]

F. Li, Y. X. Li, Y. X. Cao, et al., “Modular Engineering to Increase Intracellular Nad(H/+) Promotes Rate of Extracellular Electron Transfer of Shewanella oneidensis,” Nature Communications 9, no. 1 (2018): 3637.

[202]

H. M. Jensen, A. E. Albers, K. R. Malley, et al., “Engineering of a Synthetic Electron Conduit in Living Cells,” Proceedings of the National Academy of Sciences 107, no. 45 (2010): 19213-19218.

[203]

L. Su, T. Fukushima, A. Prior, M. Baruch, T. J. Zajdel, and C. M. Ajo-Franklin, “Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli,” ACS Synthetic Biology 9, no. 1 (2019): 115-124.

[204]

J. C. Mayr, J. H. Grosch, L. Hartmann, L. F. M. Rosa, A. C. Spiess, and F. Harnisch, “Resting Escherichia coli as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols,” Chemsuschem 12, no. 8 (2019): 1631-1634.

[205]

X. Wang, B. Zhang, J. Zhang, et al., “Conformal and Conductive Biofilm-Bridged Artificial Z-Scheme System for Visible Light-Driven Overall Water Splitting,” Science Advances 10 (2024): eadn6211.

[206]

Z. Wang, H. Bai, W. Yu, et al., “Flexible Bioelectronic Device Fabricated by Conductive Polymer-Based Living Material,” Science Advances 8 (2022): eabo1458.

[207]

A. Udayan, A. K. Pandey, P. Sharma, N. Sreekumar, and S. Kumar, “Emerging Industrial Applications of Microalgae: Challenges and Future Perspectives,” Systems Microbiology and Biomanufacturing 1, no. 4 (2021): 411-431.

[208]

H. Zhu, H. Wang, Y. Zhang, and Y. Li, “Biophotovoltaics: Recent Advances and Perspectives,” Biotechnology Advances 64 (2023): 108101.

[209]

E. A. Gizzie, J. Scott Niezgoda, M. T. Robinson, et al., “Photosystem I-Polyaniline/TiO2 Solid-State Solar Cells: Simple Devices for Biohybrid Solar Energy Conversion,” Energy & Environmental Science 8, no. 12 (2015): 3572-3576.

[210]

S. Joshi, E. Cook, and M. S. Mannoor, “Bacterial Nanobionics via 3D Printing,” Nano Letters 18, no. 12 (2018): 7448-7456.

[211]

P. I. Gordiichuk, G. J. A. H. Wetzelaer, D. Rimmerman, et al., “Solid-State Biophotovoltaic Cells Containing Photosystem I,” Advanced Materials 26, no. 28 (2014): 4863-4869.

[212]

Y. Takekuma, H. Nagakawa, T. Noji, et al., “Enhancement of Photocurrent by Integration of an Artificial Light-Harvesting Antenna With a Photosystem I Photovoltaic Device,” ACS Applied Energy Materials 2, no. 6 (2019): 3986-3990.

[213]

A. Khandelwal, K. Dhindhoria, A. Dixit, and M. Chhabra, “Superiority of Activated Graphite/CuO Composite Electrode Over Platinum Based Electrodes as Cathode in Algae Assisted Microbial Fuel Cell,” Environmental Technology & Innovation 24 (2021): 101891.

[214]

H. Zhu, L. Xu, G. Luan, et al., “A Miniaturized Bionic Ocean-Battery Mimicking the Structure of Marine Microbial Ecosystems,” Nature Communications 13, no. 1 (2022): 5608.

[215]

V. M. Friebe, A. J. Barszcz, M. R. Jones, and R. N. Frese, “Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years,” Angewandte Chemie International Edition 61, no. 24 (2022): e202201148.

[216]

H. Lee and J. Hyun, “Biophotovoltaic Living Hydrogel of an Ion-Crosslinked Carboxymethylated Cellulose Nanofiber/Alginate,” Carbohydrate Polymers 321 (2023): 121299.

[217]

X. Fang, S. Kalathil, and E. Reisner, “Semi-Biological Approaches to Solar-to-Chemical Conversion,” Chemical Society Reviews 49, no. 14 (2020): 4926-4952.

[218]

A. Efrati, C.-H. Lu, D. Michaeli, et al., “Assembly of Photo-Bioelectrochemical Cells Using Photosystem I-Functionalized Electrodes,” Nature Energy 1, no. 2 (2016): 15021.

[219]

Z. Wang, Y. Hu, S. Zhang, and Y. Sun, “Artificial Photosynthesis Systems for Solar Energy Conversion and Storage: Platforms and Their Realities,” Chemical Society Reviews 51, no. 15 (2022): 6704-6737.

[220]

Y. Pellegrin and F. Odobel, “Sacrificial Electron Donor Reagents for Solar Fuel Production,” Comptes Rendus Chimie 20, no. 3 (2016): 283-295.

[221]

J. Kosco, F. Moruzzi, B. Willner, and I. McCulloch, “Photocatalysts Based on Organic Semiconductors With Tunable Energy Levels for Solar Fuel Applications,” Advanced Energy Materials 10, no. 39 (2020): 2001935.

[222]

F. Gao, G. Liu, A. Chen, et al., “Artificial Photosynthetic Cells With Biotic-Abiotic Hybrid Energy Modules for Customized CO2 Conversion,” Nature Communications 14, no. 1 (2023): 6783.

[223]

P. Wang, A. Frank, J. Appel, et al., “In Vivo Assembly of Photosystem I-hydrogenase Chimera for In Vitro PhotoH2 Production,” Advanced Energy Materials 13, no. 14 (2023): 2203232.

[224]

K. P. Sokol, W. E. Robinson, J. Warnan, et al., “Bias-Free Photoelectrochemical Water Splitting With Photosystem II on a Dye-Sensitized Photoanode Wired to Hydrogenase,” Nature Energy 3, no. 11 (2018): 944-951.

[225]

E. Lam, M. Miller, S. Linley, R. R. Manuel, I. A. C. Pereira, and E. Reisner, “Comproportionation of CO2 and Cellulose to Formate Using a Floating Semiconductor-Enzyme Photoreforming Catalyst,” Angewandte Chemie International Edition 62, no. 20 (2023): e202215894.

[226]

W. Liang, P. Wied, F. Carraro, et al., “Metal-Organic Framework-Based Enzyme Biocomposites,” Chemical Reviews 121, no. 3 (2021): 1077-1129.

[227]

D. Zheng, Y. Zheng, J. Tan, Z. Zhang, H. Huang, and Y. Chen, “Co-Immobilization of Whole Cells and Enzymes by Covalent Organic Framework for Biocatalysis Process Intensification,” Nature Communications 15, no. 1 (2024): 5510.

[228]

I. Akpinar, X. Wang, K. Fahy, et al., “Biomimetic Mineralization of Large Enzymes Utilizing a Stable Zirconium-Based Metal-Organic Frameworks,” Journal of the American Chemical Society 146, no. 8 (2024): 5108-5117.

[229]

W. He, Y. Gan, X. Qi, et al., “Enhancing Enzyme Activity Using Hydrophilic Hollow Layered Double Hydroxides as Encapsulation Carriers,” ACS Applied Materials & Interfaces 15, no. 29 (2023): 34513-34526.

[230]

S. Cestellos-Blanco, H. Zhang, J. M. Kim, Y. Shen, and P. Yang, “Photosynthetic Semiconductor Biohybrids for Solar-Driven Biocatalysis,” Nature Catalysis 3, no. 3 (2020): 245-255.

[231]

X. Pan, W. Li, Y. Fang, et al., “Semi-Artificial Photosynthetic System Based on TiO2/Chlorophyll Composite and Microalgae for N2 Fixation,” Chemical Engineering Journal 475 (2023): 146179.

[232]

R. Matsuo, Y. Takahashi, S. Watanabe, and S. Okabe, “Fabrication of Zno/Cuo Nanoforests and Their Applicability to Microbial Photoelectrochemical Cells,” Applied Catalysis, B: Environmental 339 (2023): 123097.

[233]

J. Li, J. Shen, T. Hou, et al., “A Self-Assembled MOF-Escherichia coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis,” Advanced Science 62 (2024): e2308597.

[234]

Y. Tian, Y. Zhou, Y. Zong, et al., “Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO2 to Formic Acid,” ACS Applied Materials & Interfaces 12, no. 31 (2020): 34795-34805.

[235]

M. T. Chen, C. F. Hu, H. B. Huang, Z. G. Qian, and X. X. Xia, “Spatially Directed Biosynthesis of Quantum Dots via Spidroin Templating in Escherichia coli,” Angewandte Chemie International Edition 61, no. 49 (2022): e202214177.

[236]

H. Zhang, H. Liu, Z. Tian, et al., “Bacteria Photosensitized by Intracellular Gold Nanoclusters for Solar Fuel Production,” Nature Nanotechnology 13, no. 10 (2018): 900-905.

[237]

H. Li, X. Yu, Y. Wu, et al., “Membraneless Organelles Assembled by AuNPs-Enzyme Integration in Non-Photosynthetic Bacteria: Achieving High Specificity and Selectivity for Solar Hydrogen Production,” Chemical Engineering Journal 492 (2024): 152207.

[238]

G. Liang, X. Xu, X. Chen, et al., “Designing a Periplasmic Photosynthetic Biohybrid System for Succinate and Electric Energy Production,” Chemical Engineering Journal 477 (2023): 147152.

[239]

Y. Lin, J. Shi, W. Feng, et al., “Periplasmic Biomineralization for Semi-Artificial Photosynthesis,” Science Advances 9 (2023): eadg5858.

[240]

W. Wei, P. Sun, Z. Li, et al., “A Surface-Display Biohybrid Approach to Light-Driven Hydrogen Production in Air,” Science Advances 4 (2018): eaap9253.

[241]

O. Bachar, M. M. Meirovich, and O. Yehezkeli, “Integrated Biotic-Abiotic Solar Driven NADPH Regeneration Platform in Escherichia coli for Chemical Biomanufacturing Applications,” Advanced Functional Materials 34 (2023): 2314443.

[242]

B. Wang, C. Zeng, K. H. Chu, et al., “Enhanced Biological Hydrogen Production From Escherichia coli With Surface Precipitated Cadmium Sulfide Nanoparticles,” Advanced Energy Materials 7, no. 20 (2017): 1700611.

[243]

S. Pi, W. Yang, W. Feng, et al., “Solar-Driven Waste-to-Chemical Conversion by Wastewater-Derived Semiconductor Biohybrids,” Nature Sustainability 6, no. 12 (2023): 1673-1684.

[244]

Q. Wang, S. Kalathil, C. Pornrungroj, C. D. Sahm, and E. Reisner, “Bacteria-Photocatalyst Sheet for Sustainable Carbon Dioxide Utilization,” Nature Catalysis 5, no. 7 (2022): 633-641.

[245]

J. Kim, J.-A. Lin, J. Kim, I. Roh, S. Lee, and P. Yang, “A Red-Light-Powered Silicon Nanowire Biophotochemical Diode for Simultaneous CO2 Reduction and Glycerol Valorization,” Nature Catalysis 7 (2024): 977-986.

[246]

Z. Zhou, T. Ma, H. Zhang, et al., “Carbon Dioxide Capture From Open Air Using Covalent Organic Frameworks,” Nature 635, no. 8037 (2024): 96-101.

[247]

R. Hashizume, H. Fujii, S. Mehta, et al., “A Genetically Encoded Far-Red Fluorescent Calcium Ion Biosensor Derived From a Biliverdin-Binding Protein,” Protein Science 31, no. 10 (2022): e4440.

[248]

R. Ando, S. Shimozono, H. Ago, et al., “Staygold Variants for Molecular Fusion and Membrane-Targeting Applications,” Nature Methods 21, no. 4 (2024): 648-656.

[249]

E. Ivorra-Molla, D. Akhuli, M. B. L. McAndrew, et al., “A Monomeric Staygold Fluorescent Protein,” Nature Biotechnology 42 (2023): 1368-1371.

[250]

H. Zhang, G. D. Lesnov, O. M. Subach, et al., “Bright and Stable Monomeric Green Fluorescent Protein Derived From Staygold,” Nature Methods 21, no. 4 (2024): 657-665.

[251]

S. Niekamp, N. Stuurman, and R. D. Vale, “A 6-nm Ultra-Photostable DNA Fluorocube for Fluorescence Imaging,” Nature Methods 17, no. 4 (2020): 437-441.

[252]

F. Pennacchietti, J. Alvelid, R. A. Morales, et al., “Blue-Shift Photoconversion of Near-Infrared Fluorescent Proteins for Labeling and Tracking in Living Cells and Organisms,” Nature Communications 14, no. 1 (2023): 8402.

[253]

X. Yu, C. Li, B. Wang, et al., “Protein-Mediated Fluorescent Probes for Bioimaging and Biosensing: From Fundamentals to Applications,” TrAC, Trends in Analytical Chemistry 170 (2024): 117462.

[254]

T. W. Chen, T. J. Wardill, Y. Sun, et al., “Ultrasensitive Fluorescent Proteins for Imaging Neuronal Activity,” Nature 499, no. 7458 (2013): 295-300.

[255]

Y. Zhang, M. Rózsa, Y. Liang, et al., “Fast and Sensitive GCaMP Calcium Indicators for Imaging Neural Populations,” Nature 615, no. 7954 (2023): 884-891.

[256]

S. I. Reja, M. Minoshima, Y. Hori, and K. Kikuchi, “Near-Infrared Fluorescent Probes: A Next-Generation Tool for Protein-Labeling Applications,” Chemical Science 12, no. 10 (2021): 3437-3447.

[257]

D. Yu, M. A. Baird, J. R. Allen, et al., “A Naturally Monomeric Infrared Fluorescent Protein for Protein Labeling In Vivo,” Nature Methods 12, no. 8 (2015): 763-765.

[258]

I. T. Li, E. Pham, and K. Truong, “Protein Biosensors Based on the Principle of Fluorescence Resonance Energy Transfer for Monitoring Cellular Dynamics,” Biotechnology Letters 28, no. 24 (2006): 1971-1982.

[259]

L. Cui, L. Zhang, and H. Zeng, “Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold,” Nanomaterials 11, no. 11 (2021): 2927.

[260]

D. Zhang, E. Redington, and Y. Gong, “Rational Engineering of Ratiometric Calcium Sensors With Bright Green and Red Fluorescent Proteins,” Communications Biology 4, no. 1 (2021): 924.

[261]

K. Gohil, S. Y. Wu, K. Takahashi-Yamashiro, Y. Shen, and R. E. Campbell, “Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein,” ACS Sensors 8, no. 2 (2023): 587-597.

[262]

Y. Han, J. Yang, Y. Li, et al., “Bright and Sensitive Red Voltage Indicators for Imaging Action Potentials in Brain Slices and Pancreatic Islets,” Science Advances 9, no. 47 (2023): eadi4208.

[263]

M. Nieddu, M. Patrian, S. Ferrara, et al., “Core-Shell Structured Fluorescent Protein Nanoparticles: New Paradigm Toward Zero-Thermal-Quenching in High-Power Biohybrid Light-Emitting Diodes,” Advanced Science 10, no. 16 (2023): e2300069.

[264]

H. M. D. Bandara and S. C. Burdette, “Photoisomerization in Different Classes of Azobenzene,” Chemical Society Reviews 41, no. 5 (2012): 1809-1825.

[265]

H. Fujiwara and Y. Yonezawa, “Photoelectric Response of a Black Lipid Membrane Containing an Amphiphilic Azobenzene Derivative,” Nature 351, no. 27 (1991): 724-726.

[266]

C. Pernpeintner, J. A. Frank, P. Urban, et al., “Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles,” Langmuir 33, no. 16 (2017): 4083-4089.

[267]

P. Urban, S. D. Pritzl, D. B. Konrad, et al., “Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles,” Langmuir 34, no. 44 (2018): 13368-13374.

[268]

P. Urban, S. D. Pritzl, M. F. Ober, et al., “A Lipid Photoswitch Controls Fluidity in Supported Bilayer Membranes,” Langmuir 36, no. 10 (2020): 2629-2634.

[269]

S. D. Pritzl, D. B. Konrad, M. F. Ober, et al., “Optical Membrane Control With Red Light Enabled by Red-Shifted Photolipids,” Langmuir 38, no. 1 (2021): 385-393.

[270]

M. L. DiFrancesco, F. Lodola, E. Colombo, et al., “Neuronal Firing Modulation by a Membrane-Targeted Photoswitch,” Nature Nanotechnology 15, no. 4 (2020): 296-306.

[271]

G. M. Paternò, E. Colombo, V. Vurro, et al., “Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene,” Advanced Science 7, no. 8 (2020): 1903241.

[272]

G. M. Paternò, G. Bondelli, V. G. Sakai, V. Sesti, C. Bertarelli, and G. Lanzani, “The Effect of an Intramembrane Light-Actuator on the Dynamics of Phospholipids in Model Membranes and Intact Cells,” Langmuir 36, no. 39 (2020): 11517-11527.

[273]

M. Moschetta, V. Vurro, V. Sesti, C. Bertarelli, G. M. Paternò, and G. Lanzani, “Modulation of Mechanosensitive Potassium Channels by a Membrane-Targeted Nongenetic Photoswitch,” Journal of Physical Chemistry B 127, no. 41 (2023): 8869-8878.

[274]

G. Zhu, J. Xiong, X. Li, et al., “Neural Stimulation and Modulation With Sub-Cellular Precision by Optomechanical Bio-Dart,” Light: Science & Applications 13, no. 1 (2024): 258.

[275]

G. M. Paternò, “Materials-Driven Strategies in Bacterial Engineering,” MRS Communications 14, no. 5 (2024): 1027-1036.

[276]

J. Yu, J. Xu, S. Yang, et al., “Decreased Methylenetetrahydrofolate Reductase Activity Leads to Increased Sensitivity to Para-Aminosalicylic Acid in Mycobacterium Tuberculosis,” Antimicrobial Agents and Chemotherapy 66, no. 1 (2022): e0146521.

[277]

S. Long, Y. Yang, C. Shen, et al., “Metaproteomics Characterizes Human Gut Microbiome Function in Colorectal Cancer,” NPJ Biofilms and Microbiomes 6, no. 1 (2020): 14.

[278]

B. Martinac, J. Adler, and C. Kung, “Mechanosensitive Ion Channels of E. coli Activated by Amphipaths,” Nature 348, no. 15 (1990): 261-263.

[279]

T. C. Souza-Guerreiro, G. Bondelli, I. Grobas, et al., “Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential,” Advancement of Science 10, no. 8 (2023): 2205007.

[280]

R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel Cells and Their Development,” Biosensors and Bioelectronics 21, no. 11 (2006): 2015-2045.

[281]

X. Liu, T. Ueki, H. Gao, et al., “Microbial Biofilms for Electricity Generation From Water Evaporation and Power to Wearables,” Nature Communications 13, no. 1 (2022): 4369.

[282]

J. Zhao, F. Li, S. Kong, T. Chen, H. Song, and Z. Wang, “Elongated Riboflavin-Producing Shewanella Oneidensis in a Hybrid Biofilm Boosts Extracellular Electron Transfer,” Advanced Science 10, no. 9 (2023): e2206622.

[283]

Y. Niu, D. Xue, X. Dai, et al., “Sustainable Power Generation From Sewage With Engineered Microorganisms as Electrocatalysts,” Nature Sustainability 7 (2024): 1182-1189.

[284]

Y. Y. Yu, Y. Z. Wang, Z. Fang, et al., “Single Cell Electron Collectors for Highly Efficient Wiring-Up Electronic Abiotic/Biotic Interfaces,” Nature Communications 11, no. 1 (2020): 4087.

[285]

C. Yang, H. Aslan, P. Zhang, et al., “Carbon Dots-Fed Shewanella oneidensis MR-1 for Bioelectricity Enhancement,” Nature Communications 11, no. 1 (2020): 1379.

[286]

C. P. Tseng, F. Liu, X. Zhang, et al., “Solution-Deposited and Patternable Conductive Polymer Thin-Film Electrodes for Microbial Bioelectronics,” Advanced Materials 34, no. 13 (2022): e2109442.

[287]

S. R. McCuskey, Y. Su, D. Leifert, A. S. Moreland, and G. C. Bazan, “Living Bioelectrochemical Composites,” Advanced Materials 32, no. 24 (2020): e1908178.

[288]

G. Quek, R. J. Vázquez, S. R. McCuskey, B. Kundukad, and G. C. Bazan, “Enabling Electron Injection for Microbial Electrosynthesis With n-Type Conjugated Polyelectrolytes,” Advanced Materials 34, no. 37 (2022): e2203480.

[289]

S. Choi, “Biofuel Cells and Biobatteries: Misconceptions, Opportunities, and Challenges,” Batteries 9, no. 2 (2023): 119.

[290]

D. Maity, P. Guha Ray, P. Buchmann, M. Mansouri, and M. Fussenegger, “Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics,” Advanced Materials 35, no. 21 (2023): e2300890.

[291]

V. Kugarajah and S. Dharmalingam, “Effect of Silver Incorporated Sulphonated Poly Ether Ether Ketone Membranes on Microbial Fuel Cell Performance and Microbial Community Analysis,” Chemical Engineering Journal 415 (2021): 128961.

[292]

J. Wang, K. Wang, W. Li, H. Wang, and Y. Wang, “Enhancing Bioelectrochemical Processes in Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Comprehensive Review,” Chemical Engineering Journal 484 (2024): 149420.

[293]

Y. Wang, C. He, W. Li, et al., “High Power Generation in Mixed-Culture Microbial Fuel Cells With Corncob-Derived Three-Dimensional N-Doped Bioanodes and the Impact of N Dopant States,” Chemical Engineering Journal 399 (2020): 125848.

[294]

A. Shrivastava, D. Rishi Shrivastava, and R. Kumar Sharma, “Microbial Fuel Cell-Based Co-Generation System for Bioethanol Production and Power Management Solution,” Fuel 350 (2023): 128843.

[295]

Y. Su, L. Lu, and M. Zhou, “Wearable Microbial Fuel Cells for Sustainable Self-Powered Electronic Skins,” ACS Applied Materials & Interfaces 14, no. 7 (2022): 8664-8668.

[296]

O. Prakash, A. Mungray, S. Chongdar, S. K. Kailasa, and A. K. Mungray, “Performance of Polypyrrole Coated Metal Oxide Composite Electrodes for Benthic Microbial Fuel Cell (BMFC),” Journal of Environmental Chemical Engineering 8, no. 2 (2020): 102757.

[297]

Q. Liu, W. Xu, Q. Ding, et al., “Engineering Shewanella oneidensis-Carbon Felt Biohybrid Electrode Decorated With Bacterial Cellulose Aerogel-Electropolymerized Anthraquinone to Boost Energy and Chemicals Production,” Advanced Science 11 (2024): e2407599.

[298]

R. Cui, J. Wang, L. Liu, T. Yu, Y. Li, and C. Gao, “Removal of Radioactive Ions in Low-Concentration Nuclear Industry Wastewater With Carbon-Felt Based Iron/Magnesium/Zirconium Polycrystalline Catalytic Cathode in a Dual-Chamber Microbial Fuel Cell,” Journal of Power Sources 528 (2022): 231208.

[299]

S. L. Gong, Y. Tian, G. P. Sheng, and L. J. Tian, “Dual-Mode Harvest Solar Energy for Photothermal Cu(2-x)Se Biomineralization and Seawater Desalination by Biotic-Abiotic Hybrid,” Nature Communications 15, no. 1 (2024): 4365.

[300]

Z. Dang, Y. Guan, Z. Wu, et al., “Regulating the Synthesis Rate and Yield of Bio-Assembled FeS Nanoparticles for Efficient Cancer Therapy,” Nanoscale 13, no. 45 (2021): 18977-18986.

[301]

J. Ma, Q. Zhang, F. Chen, S. Lu, Y. Wang, and H. Liang, “Simultaneous Removal of Copper and Biodegradation of BDE-209 With Soil Microbial Fuel Cells,” Journal of Environmental Chemical Engineering 9, no. 4 (2021): 105593.

[302]

H. X. Han, L. J. Tian, D. F. Liu, H. Q. Yu, G. P. Sheng, and Y. Xiong, “Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic-Abiotic Hybrid Systems,” Journal of the American Chemical Society 144, no. 14 (2022): 6434-6441.

[303]

H. Yang, M. Zhou, M. Liu, W. Yang, and T. Gu, “Microbial Fuel Cells for Biosensor Applications,” Biotechnology Letters 37, no. 12 (2015): 2357-2364.

[304]

D. Sun, B. Xie, J. Li, X. Huang, J. Chen, and F. Zhang, “A Low-Cost Microbial Fuel Cell Based Sensor for In-Situ Monitoring of Dissolved Oxygen for Over Half a Year,” Biosensors and Bioelectronics 220 (2023): 114888.

[305]

D. P. Webster, M. A. TerAvest, D. F. R. Doud, et al., “An Arsenic-Specific Biosensor With Genetically Engineered Shewanella oneidensis in a Bioelectrochemical System,” Biosensors and Bioelectronics 62 (2014): 320-324.

[306]

F. Zhao, C. M. Niman, G. Ostovar, et al., “Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer,” ACS Synthetic Biology 13, no. 5 (2024): 1467-1476.

[307]

F. Zhao, M. S. Chavez, K. L. Naughton, et al., “Light-Induced Patterning of Electroactive Bacterial Biofilms,” ACS Synthetic Biology 11, no. 7 (2022): 2327-2338.

[308]

Y. Hu, Y. Wu, M. Mukherjee, and B. Cao, “A Near-Infrared Light Responsive c-di-GMP Module-Based and Logic Gate in Shewanella oneidensis,” Chemical Communications 53, no. 10 (2017): 1646-1648.

[309]

J. T. Atkinson, L. Su, X. Zhang, G. N. Bennett, J. J. Silberg, and C. M. Ajo-Franklin, “Real-Time Bioelectronic Sensing of Environmental Contaminants,” Nature 611, no. 7936 (2022): 548-553.

[310]

C. Suzuki, Y. Nakajima, H. Akimoto, C. Wu, and Y. Ohmiya, “A New Additional Reporter Enzyme, Dinoflagellate Luciferase, for Monitoring of Gene Expression in Mammalian Cells,” Gene 344 (2005): 61-66.

[311]

G. Morciano, A. C. Sarti, S. Marchi, et al., “Use of Luciferase Probes to Measure ATP in Living Cells and Animals,” Nature Protocols 12, no. 8 (2017): 1542-1562.

[312]

G. Zhao, L. Du, C. Ma, et al., “A Safe and Convenient Pseudovirus-Based Inhibition Assay to Detect Neutralizing Antibodies and Screen for Viral Entry Inhibitors Against the Novel Human Coronavirus MERS-CoV,” Virology Journal 10 (2013): 266.

[313]

S. Iwano, R. Obata, C. Miura, et al., “Development of Simple Firefly Luciferin Analogs Emitting Blue, Green, Red, and Near-Infrared Biological Window Light,” Tetrahedron 69, no. 19 (2013): 3847-3856.

[314]

S. Iwano, M. Sugiyama, H. Hama, et al., “Single-Cell Bioluminescence Imaging of Deep Tissue in Freely Moving Animals,” Science 359 (2018): 935-939.

[315]

T. Tamura, H. Ito, S. Torii, et al., “Akaluc Bioluminescence Offers Superior Sensitivity to Track In Vivo Dynamics of SARS-CoV-2 Infection,” iScience 27, no. 5 (2024): 109647.

[316]

M. M. Calabretta, R. Álvarez-Diduk, E. Michelini, A. Roda, and A. Merkoçi, “Nano-Lantern on Paper for Smartphone-Based ATP Detection,” Biosensors and Bioelectronics 150 (2020): 111902.

[317]

S. Wu, J. Xu, W. Chen, et al., “Protein Nanoscaffold Enables Programmable Nanobody-Luciferase Immunoassembly for Sensitive and Simultaneous Detection of Aflatoxin B1 and Ochratoxin A,” Journal of Hazardous Materials 462 (2024): 132701.

[318]

M. M. Nguyen, J. Gil, M. Brown, et al., “Accurate and Sensitive Detection of Salmonella in Foods by Engineered Bacteriophages,” Scientific Reports 10, no. 1 (2020): 17463.

[319]

S. Schrevens and D. Sanglard, “Investigating Candida Glabrata Urinary Tract Infections (UTIs) in Mice Using Bioluminescence Imaging,” Journal of Fungi 7, no. 10 (2021): 844.

[320]

D. T. Nguyen, H. R. Kim, J. H. Jung, K.-B. Lee, and B. C. Kim, “The Development of Paper Discs Immobilized With Luciferase/D-Luciferin for the Detection of ATP From Airborne Bacteria,” Sensors and Actuators B: Chemical 260 (2018): 274-281.

[321]

M. Mimee, P. Nadeau, A. Hayward, et al., “An Ingestible Bacterial-Electronic System to Monitor Gastrointestinal Health,” Science 360, no. 6391 (2018): 915-918.

[322]

D. W. Ow, K. V. Wood, M. DeLuca, J. R. de Wet, D. R. Helinski, and S. H. Howell, “Transient and Stable Expression of the Firefly Luciferase Gene in Plant Cells and Transgenic Plants,” Science 234, no. 4778 (1986): 856-859.

[323]

S. Y. Kwak, J. P. Giraldo, M. H. Wong, et al., “A Nanobionic Light-Emitting Plant,” Nano Letters 17, no. 12 (2017): 7951-7961.

[324]

P. Zheng, J. Ge, J. Ji, et al., “Metabolic Engineering and Mechanical Investigation of Enhanced Plant Autoluminescence,” Plant Biotechnology Journal 21, no. 8 (2023): 1671-1681.

[325]

K. Bourzac, “Glow Way! Bioluminescent Houseplant Hits US Market for First Time,” Nature 626 (2024): 701.

[326]

C. So, K. Menelaou, J. Uraji, et al., “Mechanism of Spindle Pole Organization and Instability in Human Oocytes,” Science 375, no. 6581 (2022): eabj3944.

[327]

Y. Li, Z. Deng, Y. Kamisugi, et al., “A Minus-End Directed Kinesin Motor Directs Gravitropism in Physcomitrella Patens,” Nature Communications 12, no. 1 (2021): 4470.

[328]

H. Jia, J. Flommersfeld, M. Heymann, et al., “3D Printed Protein-Based Robotic Structures Actuated by Molecular Motor Assemblies,” Nature Materials 21, no. 6 (2022): 703-709.

[329]

T. M. R. Ibusuki, T. Morishita, A. Furuta, et al., “Programmable Molecular Transport Achieved by Engineering Protein Motors to Move on DNA Nanotubes,” Science 375 (2022): 1159-1164.

[330]

T. Nitta, Y. Wang, Z. Du, K. Morishima, and Y. Hiratsuka, “A Printable Active Network Actuator Built From an Engineered Biomolecular Motor,” Nature Materials 20, no. 8 (2021): 1149-1155.

[331]

Y. Wang, T. Nitta, Y. Hiratsuka, and K. Morishima, “In situ Integrated Microrobots Driven by Artificial Muscles Built From Biomolecular Motors,” Science Robotics 7 (2022): eaba8212.

[332]

K. B. Justus, T. Hellebrekers, D. D. Lewis, et al., “A Biosensing Soft Robot: Autonomous Parsing of Chemical Signals Through Integrated Organic and Inorganic Interfaces,” Science Robotics 4, no. 31 (2019): eaax0765.

[333]

S. Luo, D. Adam, S. Giaveri, et al., “ATP Production From Electricity With a New-to-Nature Electrobiological Module,” Joule 7, no. 8 (2023): 1745-1758.

[334]

G. Ren, J. Ye, Q. Hu, D. Zhang, Y. Yuan, and S. Zhou, “Growth of Electroautotrophic Microorganisms Using Hydrovoltaic Energy Through Natural Water Evaporation,” Nature Communications 15, no. 1 (2024): 4992.

[335]

F. Harnisch, J. S. Deutzmann, S. T. Boto, and M. A. Rosenbaum, “Microbial Electrosynthesis: Opportunities for Microbial Pure Cultures,” Trends in Biotechnology 42, no. 8 (2024): 1035-1047.

[336]

W. Bai, T. O. Ranaivoarisoa, R. Singh, K. Rengasamy, and A. Bose, “N-Butanol Production by Rhodopseudomonas palustris TIE-1,” Communications Biology 4, no. 1 (2021): 1257.

[337]

Y. Li, Q. Luo, J. Su, G. Dong, M. Cao, and Y. Wang, “Metabolic Regulation of Shewanella oneidensis for Microbial Electrosynthesis: From Extracellular to Intracellular,” Metabolic Engineering 80 (2023): 1-11.

[338]

H. Bi, K. Wang, C. Xu, et al., “Biofuel Synthesis From Carbon Dioxide via a Bio-Electrocatalysis System,” Chem Catalysis 3, no. 3 (2023): 100557.

[339]

T. Zheng, M. Zhang, L. Wu, et al., “Upcycling CO2 Into Energy-Rich Long-Chain Compounds via Electrochemical and Metabolic Engineering,” Nature Catalysis 5, no. 5 (2022): 388-396.

[340]

L. Jourdin, J. Sousa, N. Stralen, and D. P. B. T. B. Strik, “Techno-Economic Assessment of Microbial Electrosynthesis From CO2 And/Or Organics: An Interdisciplinary Roadmap Towards Future Research and Application,” Applied Energy 279 (2020): 115775.

[341]

L. Castañeda-Losada, D. Adam, N. Paczia, et al., “Bioelectrocatalytic Cofactor Regeneration Coupled to CO2 Fixation in a Redox-Active Hydrogel for Stereoselective C−C Bond Formation,” Angewandte Chemie International Edition 60, no. 38 (2021): 21056-21061.

[342]

S. Tian, G. Long, P. Zhou, et al., “A Coupled System of Ni3S2 and Rh Complex With Biomimetic Function for Electrocatalytic 1,4-NAD(P)H Regeneration,” Journal of the American Chemical Society 146, no. 23 (2024): 15730-15739.

[343]

R. Wu, F. Li, X. Cui, et al., “Back Cover: Enzymatic Electrosynthesis of Glycine From CO2 and NH3,” Angewandte Chemie International Edition 62, no. 14 (2023): e202302407.

[344]

G. García-Molina, P. Natale, A. M. Coito, et al., “Electro-Enzymatic ATP Regeneration Coupled to Biocatalytic Phosphorylation Reactions,” Bioelectrochemistry 152 (2023): 108432.

[345]

S. Ruccolo, G. Brito, M. Christensen, et al., “Electrochemical Recycling of Adenosine Triphosphate in Biocatalytic Reaction Cascades,” Journal of the American Chemical Society 144, no. 49 (2022): 22582-22588.

[346]

V. K. Oikonomou, M. Huerta, A. Sandéhn, et al., “eSoil: A Low-Power Bioelectronic Growth Scaffold That Enhances Crop Seedling Growth,” Proc Natl Acad Sci 121 (2023): e2304135120.

[347]

H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, et al., “Magnetic Nanoparticles and Clusters for Magnetic Hyperthermia: Optimizing Their Heat Performance and Developing Combinatorial Therapies to Tackle Cancer,” Chemical Society Reviews 50, no. 20 (2021): 11614-11667.

[348]

P. Ye, F. Li, J. Zou, et al., “In Situ Generation of Gold Nanoparticles on Bacteria-Derived Magnetosomes for Imaging-Guided Starving/Chemodynamic/Photothermal Synergistic Therapy Against Cancer,” Advanced Functional Materials 32, no. 17 (2022): 2110063.

[349]

C. Chen, P. Wang, H. Chen, et al., “Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma Under an Alternating Magnetic Field,” ACS Applied Materials & Interfaces 14, no. 12 (2022): 14049-14058.

[350]

D. Gandia, L. Marcano, L. Gandarias, et al., “Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency,” ACS Applied Materials & Interfaces 15, no. 1 (2022): 566-577.

[351]

B. Wang, Y. Qin, J. Liu, et al., “Magnetotactic Bacteria-Based Drug-Loaded Micromotors for Highly Efficient Magnetic and Biological Double-Targeted Tumor Therapy,” ACS Applied Materials & Interfaces 15, no. 2 (2023): 2747-2759.

[352]

M. B. Akolpoglu, Y. Alapan, N. O. Dogan, et al., “Magnetically Steerable Bacterial Microrobots Moving in 3D Biological Matrices for Stimuli-Responsive Cargo Delivery,” Science Advances 8, no. 28 (2022): eabo6163.

[353]

H. Chen, Y. Li, Y. Wang, et al., “An Engineered Bacteria-Hybrid Microrobot With the Magnetothermal Bioswitch for Remotely Collective Perception and Imaging-Guided Cancer Treatment,” ACS Nano 16, no. 4 (2022): 6118-6133.

[354]

X. Ma, X. Liang, Y. Li, et al., “Modular-Designed Engineered Bacteria for Precision Tumor Immunotherapy via Spatiotemporal Manipulation by Magnetic Field,” Nature Communications 14, no. 1 (2023): 1606.

[355]

S. J. Song, C. C. Mayorga-Martinez, J. Vyskočil, M. Častorálová, T. Ruml, and M. Pumera, “Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum Mmagneticum for Water Decontamination,” ACS Applied Materials & Interfaces 15, no. 5 (2023): 7023-7029.

[356]

X. Liu, Y. Yang, M. E. Inda, et al., “Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis,” Advanced Functional Materials 31, no. 27 (2021): 2010918.

[357]

X. Peng, M. Urso, M. Kolackova, D. Huska, and M. Pumera, “Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics From the Aquatic Environment,” Adv Functi Mater 34, no. 3 (2023): 2307477.

[358]

E. Mittmann, F. Mickoleit, D. S. Maier, et al., “A Magnetosome-Based Platform for Flow Biocatalysis,” ACS Applied Materials & Interfaces 14, no. 19 (2022): 22138-22150.

[359]

H. Chen, T. Zhou, S. Li, et al., “Living Magnetotactic Microrobots Based on Bacteria With a Surface-Displayed CRISPR/Cas12a System for Penaeus Viruses Detection,” ACS Applied Materials & Interfaces 15, no. 41 (2023): 47930-47938.

[360]

S. Ibsen, A. Tong, C. Schutt, S. Esener, and S. H. Chalasani, “Sonogenetics Is a Non-Invasive Approach to Activating Neurons in Caenorhabditis elegans,” Nature Communications 6, no. 1 (2015): 8264.

[361]

J. F. Hou, M. O. G. Nayeem, K. A. Caplan, et al., “An Implantable Piezoelectric Ultrasound Stimulator (ImPULS) for Deep Brain Activation,” Nature Communications 15, no. 1 (2024): 4601.

[362]

J. Kubanek, J. Shi, J. Marsh, D. Chen, C. Deng, and J. Cui, “Ultrasound Modulates Ion Channel Currents,” Scientific Reports 6, no. 1 (2016): 24170.

[363]

J. Ye, S. Tang, L. Meng, et al., “Ultrasonic Control of Neural Activity Through Activation of the Mechanosensitive Channel MscL,” Nano Letters 18, no. 7 (2018): 4148-4155.

[364]

Y.-S. Huang, C.-H. Fan, N. Hsu, et al., “Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein,” Nano Letters 20, no. 2 (2019): 1089-1100.

[365]

B. Y. Lee, J. Zhang, C. Zueger, et al., “Virus-Based Piezoelectric Energy Generation,” Nature Nanotechnology 7, no. 6 (2012): 351-356.

[366]

J. Ye, G. Ren, L. Liu, et al., “Wastewater Denitrification Driven by Mechanical Energy Through Cellular Piezo-Sensitization,” Nature Water 2, no. 6 (2024): 531-540.

[367]

Y. Yang, C. P. Pacia, D. Ye, et al., “Sonothermogenetics for Noninvasive and Cell-Type Specific Deep Brain Neuromodulation,” Brain Stimulation 14, no. 4 (2021): 790-800.

[368]

C. H. Fan, K. C. Wei, N. H. Chiu, et al., “Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson's Disease,” Nano Letters 21, no. 14 (2021): 5967-5976.

[369]

Q. Xian, Z. Qiu, S. Murugappan, et al., “Modulation of Deep Neural Circuits With Sonogenetics,” Proceedings of the National Academy of Sciences 120, no. 22 (2023): e2220575120.

[370]

S. Cadoni, C. Demené, I. Alcala, et al., “Ectopic Expression of a Mechanosensitive Channel Confers Spatiotemporal Resolution to Ultrasound Stimulations of Neurons for Visual Restoration,” Nature Nanotechnology 18, no. 6 (2023): 667-676.

[371]

Z. Hu, Y. Yang, L. Yang, et al., “Airy-Beam Holographic Sonogenetics for Advancing Neuromodulation Precision and Flexibility,” Proceedings of the National Academy of Sciences 121, no. 26 (2024): e2402200121.

[372]

T. He, H. Wang, T. Wang, et al., “Sonogenetic Nanosystem Activated Mechanosensitive Ion Channel to Induce Cell Apoptosis for Cancer Immunotherapy,” Chemical Engineering Journal 407 (2021): 127173.

[373]

J. Li, W. D. Jamieson, P. Dimitriou, et al., “Building Programmable Multicompartment Artificial Cells Incorporating Remotely Activated Protein Channels Using Microfluidics and Acoustic Levitation,” Nature Communications 13, no. 1 (2022): 4125.

[374]

T. Li, Y. Yuan, L. Gu, et al., “Ultrastable Piezoelectric Biomaterial Nanofibers and Fabrics as an Implantable and Conformal Electromechanical Sensor Patch,” Science Advances 10, no. 29 (2024): eadn8706.

[375]

J.-H. Lee, J. H. Lee, J. Xiao, M. S. Desai, X. Zhang, and S.-W. Lee, “Vertical Self-Assembly of Polarized Phage Nanostructure for Energy Harvesting,” Nano Letters 19, no. 4 (2019): 2661-2667.

[376]

D. B. Di Wu, C. Cook, Z. Ma, et al., “Biomolecular Actuators for Genetically Selective Acousticmanipulation of Cells,” Science Advances 9, no. 8 (2023): eadd9186.

[377]

D. Wu, D. Baresch, C. Cook, et al., “Biomolecular Actuators for Genetically Selective Acoustic Manipulation of Cells,” Science Advances 9, no. 8 (2023): eadd9186.

[378]

D. Di Wu, C. Cook, Z. Ma, et al., “Biomolecular Actuators for Genetically Selective Acoustic Manipulation of Cells,” Science Advances 9, no. 8 (2023): eadd9186.

[379]

Y. Yang, Y. Wang, F. Zeng, Y. Chen, Z. Chen, and F. Yan, “Ultrasound-Visible Engineered Bacteria for Tumor Chemo-Immunotherapy,” Cell Rep Med 5 (2024): 101512.

[380]

D. P. Sawyer, A. Bar-Zion, A. Farhadi, et al., “Ultrasensitive Ultrasound Imaging of Gene Expression With Signal Unmixing,” Nature Methods 18, no. 8 (2021): 945-952.

[381]

Y. Yao, M. E. McFadden, S. M. Luo, et al., “Remote Control of Mechanochemical Reactions Under Physiological Conditions Using Biocompatible Focused Ultrasound,” Proceedings of the National Academy of Sciences 120, no. 39 (2023): e2309822120.

[382]

W. S. Kim, S. Min, S. K. Kim, et al., “Magneto-Acoustic Protein Nanostructures for Non-Invasive Imaging of Tissue Mechanics In Vivo,” Nature Materials 23, no. 2 (2024): 290-300.

[383]

B. Ling, B. Gungoren, Y. Yao, et al., “Truly Tiny Acoustic Biomolecules for Ultrasound Imaging and Therapy,” Advanced Materials 36 (2024): e2307106.

[384]

X. Chen, L. Lai, X. Li, et al., “Magnetotactic Bacteria AMB-1 With Active Deep Tumor Penetrability for Magnetic Hyperthermia of Hypoxic Tumors,” Biomaterials Science 10, no. 22 (2022): 6510-6516.

[385]

Y. Hao, Z. Li, J. Luo, L. Li, and F. Yan, “Ultrasound Molecular Imaging of Epithelial Mesenchymal Transition for Evaluating Tumor Metastatic Potential via Targeted Biosynthetic Gas Vesicles,” Small 19, no. 21 (2023): e2207940.

[386]

T. M. Yi, Y. Huang, M. I. Simon, and J. Doyle, “Robust Perfect Adaptation in Bacterial Chemotaxisthrough Integral Feedback Control,” Proceedings of the National Academy of Sciences 97, no. 9 (2000): 4649-4653.

[387]

F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a Dynamic Sensor-Regulator System for Production of Chemicals and Fuels Derived From Fatty Acids,” Nature Biotechnology 30, no. 4 (2012): 354-359.

[388]

A. Bansal, S. Shikha, and Y. Zhang, “Towards Translational Optogenetics,” Nature Biomedical Engineering 7, no. 4 (2022): 349-369.

[389]

M. A. Lalwani, S. S. Ip, C. Carrasco-López, et al., “Optogenetic Control of the Lac Operon for Bacterial Chemical and Protein Production,” Nature Chemical Biology 17, no. 1 (2020): 71-79.

[390]

Y. Zhou, D. Kong, X. Wang, et al., “A Small and Highly Sensitive Red/Far-Red Optogenetic Switch for Applications in Mammals,” Nature Biotechnology 40, no. 2 (2021): 262-272.

[391]

J. L. Terrell, T. Tschirhart, J. P. Jahnke, et al., “Bioelectronic Control of a Microbial Community Using Surface-Assembled Electrogenetic Cells to Route Signals,” Nature Nanotechnology 16, no. 6 (2021): 688-697.

[392]

N. C. Rockwell, Y.-S. Su, and J. C. Lagarias, “Phytochrome Structure and Signaling Mechanisms,” Annual Review of Plant Biology 57, no. 1 (2006): 837-858.

[393]

M. J. Kennedy, R. M. Hughes, L. A. Peteya, J. W. Schwartz, M. D. Ehlers, and C. L. Tucker, “Rapid Blue-Light-Mediated Induction of Protein Interactions in Living Cells,” Nature Methods 7 (2010): 973-975.

[394]

Wu Di Wu, Q. Hu, Z. Yan, et al., “Structural Basis of Ultraviolet-B Perception by UVR8,” Nature 484, no. 7393 (2012): 214-219.

[395]

K. Müller, R. Engesser, S. Schulz, et al., “Multi-Chromatic Control of Mammalian Gene Expression and Signaling,” Nucleic Acids Research 41, no. 12 (2013): e124.

[396]

G. A. Woolley, “Designing Chimeric LOV Photoswitches,” Chemistry & Biology 19, no. 4 (2012): 441-442.

[397]

L. J. Bugaj, A. T. Choksi, C. K. Mesuda, R. S. Kane, and D. V. Schaffer, “Optogenetic Protein Clustering and Signaling Activation in Mammalian Cells,” Nature Methods 10, no. 3 (2013): 249-252.

[398]

L. Zhu, H. M. McNamara, and J. E. Toettcher, “Light-Switchable Transcription Factors Obtained by Direct Screening in Mammalian Cells,” Nature Communications 14, no. 1 (2023): 3185.

[399]

S. M. Castillo-Hair, E. A. Baerman, M. Fujita, O. A. Igoshin, and J. J. Tabor, “Optogenetic Control of Bacillus subtilis Gene Expression,” Nature Communications 10, no. 1 (2019): 3099.

[400]

F. Salinas, V. Rojas, V. Delgado, J. López, E. Agosin, and L. F. Larrondo, “Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast,” mBio 9, no. 4 (2018): e00626-18.

[401]

A. L. A. Pérez, L. C. Piva, J. P. C. Fulber, et al., “Optogenetic Strategies for the Control of Gene Expression in Yeasts,” Biotechnology Advances 54 (2022): 107839.

[402]

R. Ochoa-Fernandez, N. B. Abel, F.-G. Wieland, et al., “Optogenetic Control of Gene Expression in Plants in the Presence of Ambient White Light,” Nature Methods 17, no. 7 (2020): 717-725.

[403]

M. Nakajima, K. Abe, S. Ferri, and K. Sode, “Development of a Light-Regulated Cell-Recovery System for Non-Photosynthetic Bacteria,” Microbial Cell Factories 15, no. 1 (2016): 31.

[404]

P. Wu, Y. Chen, M. Liu, G. Xiao, and J. Yuan, “Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production,” ACS Synthetic Biology 10, no. 1 (2020): 125-131.

[405]

L. He, Z. Huang, K. Huang, et al., “Optogenetic Control of Non-Apoptotic Cell Death,” Advanced Science 8, no. 13 (2021): 2100424.

[406]

Q. Ding, D. Ma, G.-Q. Liu, et al., “Light-Powered Escherichia coli Cell Division for Chemical Production,” Nature Communications 11, no. 1 (2020): 2262.

[407]

Y. Huang, A. Xia, G. Yang, and F. Jin, “Bioprinting Living Biofilms Through Optogenetic Manipulation,” ACS Synthetic Biology 7, no. 5 (2018): 1195-1200.

[408]

J. Zhang, Y. Luo, and C. L. Poh, “Blue Light-Directed Cell Migration, Aggregation, and Patterning,” Journal of Molecular Biology 432, no. 10 (2020): 3137-3148.

[409]

F. Chen and S. V. Wegner, “Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities,” ACS Synthetic Biology 9, no. 5 (2020): 1169-1180.

[410]

M. Tardu, S. Bulut, and I. H. Kavakli, “MerR and ChrR Mediate Blue Light Induced Photo-Oxidative Stress Response at the Transcriptional Level in Vibrio cholerae,” Scientific Reports 7, no. 1 (2017): 40817.

[411]

M. S. Magaraci, A. Veerakumar, P. Qiao, et al., “Engineering Escherichia coli for Light-Activated Cytolysis of Mammalian Cells,” ACS Synthetic Biology 3, no. 12 (2014): 944-948.

[412]

M. I. Brier and J. S. Dordick, “Remote Activation of Cellular Signaling,” Science 368, no. 6494 (2020): 936-937.

[413]

M. Joshua, Y. Y. Lawrence, P. Bombelli, et al., “Synthetic Biology and Bioelectrochemical Tools for Electrogenetic System Engineering,” Science Advances 8, no. 18 (2022): eabm5091.

[414]

T. Tschirhart, E. Kim, R. McKay, et al., “Electronic Control of Gene Expression and Cell Behaviour in Escherichia coli Through Redox Signalling,” Nature Communications 8, no. 1 (2017): 14030.

[415]

J. Robert, L. P. Nims, N. B. Ho, et al., “A Synthetic Mechanogenetic Gene Circuit for Autonomous Drug Delivery in Engineered Tissues,” Science Advances 7 (2021): eabd9858.

[416]

M. O. Din, A. Martin, I. Razinkov, N. Csicsery, and J. Hasty, “Interfacing Gene Circuits With Microelectronics Through Engineered Population Dynamics,” Science Advances 6, no. 21 (2020): eaaz8344.

[417]

K. Krawczyk, S. Xue, P. Buchmann, et al., “Electrogenetic Cellular Insulin Release for Real-Timeglycemic Control in Type 1 Diabetic Mice,” Science 368, no. 6494 (2020): 993-1001.

[418]

J. Huang, S. Xue, P. Buchmann, A. P. Teixeira, and M. Fussenegger, “An Electrogenetic Interface to Program Mammalian Gene Expression by Direct Current,” Nature Metabolism 5, no. 8 (2023): 1395-1407.

[419]

P. Sadat Mousavi, S. J. Smith, J. B. Chen, et al., “A Multiplexed, Electrochemical Interface for Gene-Circuit-Based Sensors,” Nature Chemistry 12, no. 1 (2019): 48-55.

[420]

C. Lin, L. Liu, and P. Zou, “Functional Imaging-Guided Cell Selection for Evolving Genetically Encoded Fluorescent Indicators,” Cell Reports Methods 3, no. 8 (2023): 100544.

[421]

D. T. Nguyen, D. A. Mitchell, and W. A. van der Donk, “Genome Mining for New Enzyme Chemistry,” ACS Catalysis 14, no. 7 (2024): 4536-4553.

[422]

V. Andrei, I. Roh, and P. Yang, “Nanowire Photochemical Diodes for Artificial Photosynthesis,” Science Advances 9, no. 6 (2023): eade9044.

[423]

Q. Wang, C. Pornrungroj, S. Linley, and E. Reisner, “Strategies to Improve Light Utilization in Solar Fuel Synthesis,” Nature Energy 7, no. 1 (2021): 13-24.

[424]

J. Liang, K. Xiao, X. Wang, et al., “Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems,” Chemical Reviews 124, no. 15 (2024): 9081-9112.

[425]

H. Leng, Y. Wang, W. Zhao, S. M. Sievert, and X. Xiao, “Identification of a Deep-Branching Thermophilic Clade Sheds Light on Early Bacterial Evolution,” Nature Communications 14, no. 1 (2023): 4354.

[426]

M. Ebbesen, J. G. Korvink, M. Islam, and A. D. Lantada, “The Ethics of Engineered Living Materials,” Trends in Biotechnology 42, no. 1 (2024): 5-9.

[427]

Z. Dai, A. J. Lee, S. Roberts, et al., “Versatile Biomanufacturing Through Stimulus-Responsive Cell-Material Feedback,” Nature Chemical Biology 15, no. 10 (2019): 1017-1024.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/