Flexible Fiber-Shaped Supercapacitors: Structures, Materials, Fabrication Methods, and Applications

Ding Liu , Yuchang Xue , Xiao Yang , Yanan Shen , Pengyu Zhang , Hui Zheng , Chunyang Wang , Haisheng Chen , Xinghua Zheng , Ting Zhang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 377 -411.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (3) : 377 -411. DOI: 10.1002/idm2.12243
REVIEW

Flexible Fiber-Shaped Supercapacitors: Structures, Materials, Fabrication Methods, and Applications

Author information +
History +
PDF

Abstract

The advent of wearable electronics has generated considerable interest in the development of fiber-shaped supercapacitors (FSCs). FSCs have several applications, such as integration into wearable power fabrics for modular energy storage, coupling with specific devices, forming composite fibers, and combining with energy-harvesting fibers to develop integrated energy-harvesting and storage-usage fabrics. This review provides a comprehensive overview of FSCs based on their fundamental principles, detailing various structural configurations (e.g., parallel, wrapped, twisted, and coaxial) and substrate materials (e.g., carbon-based, polymeric, and metallic fibers), along with strategies for enhancing their electrochemical and mechanical performance. Furthermore, it outlines large-scale fabrication techniques, such as wet spinning, synchronous coupling, direct ink writing, and thermal drawing. This review identifies the challenges currently facing FSCs research and suggests directions for future development.

Keywords

electrodes / fibers / supercapacitors / wearable electronics

Cite this article

Download citation ▾
Ding Liu, Yuchang Xue, Xiao Yang, Yanan Shen, Pengyu Zhang, Hui Zheng, Chunyang Wang, Haisheng Chen, Xinghua Zheng, Ting Zhang. Flexible Fiber-Shaped Supercapacitors: Structures, Materials, Fabrication Methods, and Applications. Interdisciplinary Materials, 2025, 4(3): 377-411 DOI:10.1002/idm2.12243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Wen, F. Li, and H. M. Cheng, “Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: From Materials to Devices,” Advanced Materials 28, no. 22 (2016): 4306-4337, https://doi.org/10.1002/adma.201504225.

[2]

X. Xu, S. Xie, Y. Zhang, and H. Peng, “The Rise of Fiber Electronics,” Angewandte Chemie International Edition 58, no. 39 (2019): 13643-13653, https://doi.org/10.1002/anie.201902425.

[3]

M. Kaltenbrunner, T. Sekitani, J. Reeder, et al., “An Ultra-Lightweight Design for Imperceptible Plastic Electronics,” Nature 499, no. 7459 (2013): 458-463.

[4]

W. Weng, Q. Sun, Y. Zhang, et al., “Winding Aligned Carbon Nanotube Composite Yarns into Coaxial Fiber Full Batteries With High Performances,” Nano Letters 14, no. 6 (2014): 3432-3438.

[5]

Y. Liu, A. Arnaert, D. da Costa, P. Sumbly, Z. Debe, and S. Charbonneau, “Experiences of Patients With Chronic Obstructive Pulmonary Disease Using the Apple Watch Series 6 Versus the Traditional Finger Pulse Oximeter for Home SpO2 Self-Monitoring: Qualitative Study Part 2,” JMIR Aging 6 (2023): e41539.

[6]

M. D. Lima, S. Fang, X. Lepró, et al., “Biscrolling Nanotube Sheets and Functional Guests into Yarns,” Science 331, no. 6013 (2011): 51-55.

[7]

V. L. Pushparaj, M. M. Shaijumon, A. Kumar, et al., “Flexible Energy Storage Devices Based on Nanocomposite Paper,” Proceedings of the National Academy of Sciences 104, no. 34 (2007): 13574-13577.

[8]

C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, “Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors,” Nano Letters 10, no. 10 (2010): 4025-4031.

[9]

K. G. Stakem, F. J. Leslie, and G. L. Gregory, “Polymer Design for Solid-State Batteries and Wearable Electronics,” Chemical Science 15, no. 27 (2024): 10281-10307, https://doi.org/10.1039/d4sc02501f.

[10]

E. Serag, A. El-Maghraby, and A. El Nemr, “Recent Developments in the Application of Carbon-Based Nanomaterials in Implantable and Wearable Enzyme-Biofuel Cells,” Carbon Letters 32, no. 2 (2022): 395-412, https://doi.org/10.1007/s42823-021-00299-2.

[11]

Z. Yan, S. Luo, Q. Li, Z. S. Wu, and S. Liu, “Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications,” Advanced Science 11, no. 8 (2024): 2302172.

[12]

H. P. Hayat, F. K. Dokan, M. S. Onses, E. Yılmaz, A. Duran, and E. Sahmetlioglu, “Flexible Electrodes Composed of Flower-Like MoS2 and MXene for Supercapacitor Applications,” Materials Research Bulletin 175 (2024): 112747, https://doi.org/10.1016/j.materresbull.2024.112747.

[13]

S. Verma, V. Gupta, A. Khosla, S. Kumar, and S. Arya, “High Performance Asymmetric Supercapacitor Based on Vertical Nanowire Arrays of a Novel Ni@Co─Fe LDH Core@Shell as Negative and Ni(OH)2 as Positive Electrode,” Nanotechnology 31, no. 24 (2020): 245401, https://doi.org/10.1088/1361-6528/ab7b07.

[14]

D. Huang, Z. Y. Lu, X. Y. Liu, et al., “High-Performance Flexible Supercapacitors With Hierarchical Structured Cathode (NiCo2O4/Au/MnO2) and Anode (NiCo2S4/PPy),” Applied Surface Science 60 (2022): 5154707, https://doi.org/10.1016/j.apsusc.2022.154707.

[15]

X. Zang, Q. Chen, P. Li, et al., “Highly Flexible and Adaptable, All-Solid-State Supercapacitors Based on Graphene Woven-Fabric Film Electrodes,” Small 10, no. 13 (2014): 2583-2588, https://doi.org/10.1002/smll.201303738.

[16]

Y. Chao, Y. Han, Z. Chen, et al., “Multiscale Structural Design of 2D Nanomaterials-Based Flexible Electrodes for Wearable Energy Storage Applications,” Advanced Science 11, no. 9 (2024): 2305558, https://doi.org/10.1002/advs.202305558.

[17]

A. A. Simegnaw, B. Malengier, G. Rotich, M. G. Tadesse, and L. Van Langenhove, “Review on the Integration of Microelectronics for E-Textile,” Materials 14, no. 17 (2021): 5113, https://doi.org/10.3390/ma14175113.

[18]

M. Stoppa and A. Chiolerio, “Wearable Electronics and Smart Textiles: A Critical Review,” Sensors 14, no. 7 (2014): 11957-11992.

[19]

C. Xiong, M. Li, W. Zhao, C. Duan, and Y. Ni, “Flexible N-Doped Reduced Graphene Oxide/Carbon Nanotube-MnO2 Film as a Multifunctional Material for High-Performance Supercapacitors, Catalysts and Sensors,” Journal of Materiomics 6, no. 3 (2020): 523-531, https://doi.org/10.1016/j.jmat.2020.03.008.

[20]

L. Nyholm, G. Nyström, A. Mihranyan, and M. Strømme, “Toward Flexible Polymer and Paper-Based Energy Storage Devices,” Advanced Materials 23, no. 33 (2011): 3751-3769.

[21]

J. Ren, L. Li, C. Chen, et al., “Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery,” Advanced Materials 25, no. 8 (2013): 1155-1159, https://doi.org/10.1002/adma.201203445.

[22]

Y. H. Kwon, S.-W. Woo, H.-R. Jung, et al., “Cable-Type Flexible Lithium Ion Battery Based on Hollow Multi-Helix Electrodes,” Advanced Materials 24, no. 38 (2012): 5192-5197, https://doi.org/10.1002/adma.201202196.

[23]

T. Khudiyev, B. Grena, G. Loke, et al., “Thermally Drawn Rechargeable Battery Fiber Enables Pervasive Power,” Materials Today 52 (2022): 80-89.

[24]

E. Pameté, L. Köps, F. A. Kreth, et al., “The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading,” Advanced Energy Materials 13, no. 29 (2023): 2301008.

[25]

P. Sharma and T. S. Bhatti, “A Review on Electrochemical Double-Layer Capacitors,” Energy Conversion and Management 51, no. 12 (2010): 2901-2912.

[26]

X. Chen, R. Paul, and L. Dai, “Carbon-Based Supercapacitors for Efficient Energy Storage,” National Science Review 4, no. 3 (2017): 453-489.

[27]

N. Devillers, S. Jemei, M.-C. Péra, D. Bienaimé, and F. Gustin, “Review of Characterization Methods for Supercapacitor Modelling,” Journal of Power Sources 246 (2014): 596-608.

[28]

P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature Materials 7, no. 11 (2008): 845-854.

[29]

T. Wang, H. C. Chen, F. Yu, X. S. Zhao, and H. Wang, “Boosting the Cycling Stability of Transition Metal Compounds-Based Supercapacitors,” Energy Storage Materials 16 (2019): 545-573.

[30]

R. S. Gabhi, D. W. Kirk, and C. Q. Jia, “Preliminary Investigation of Electrical Conductivity of Monolithic Biochar,” Carbon 116 (2017): 435-442.

[31]

S. Mahala, K. Khosravinia, and A. Kiani, “Unwanted Degradation in Pseudocapacitors: Challenges and Opportunities. Review,” Journal of Energy Storage 67 (2023): 107558, https://doi.org/10.1016/j.est.2023.107558.

[32]

A. Muzaffar, M. B. Ahamed, K. Deshmukh, and J. Thirumalai, “A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications,” Renewable & Sustainable Energy Reviews 101 (2019): 123-145, https://doi.org/10.1016/j.rser.2018.10.026.

[33]

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science & Business Media, 2013).

[34]

Y. Kumar, S. Rawal, B. Joshi, and S. A. Hashmi, “Background, Fundamental Understanding and Progress in Electrochemical Capacitors,” Journal of Solid State Electrochemistry 23, no. 3 (2019): 667-692, https://doi.org/10.1007/s10008-018-4160-3.

[35]

P. Xu, B. Wei, Z. Cao, et al., “Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers,” ACS Nano 9, no. 6 (2015): 6088-6096.

[36]

B. Mendoza-Sánchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. S. Grant, “An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte,” Electrochimica Acta 91 (2013): 253-260.

[37]

K. H. Modi, P. M. Pataniya, S. Siraj, P. Sahatiya, V. Patel, and C. K. Sumesh, “Synergistic Effect From Ni2+ Ions With SnS for All Solid-State Type Symmetric Supercapacitor,” Journal of Energy Storage 63 (2023): 107040, https://doi.org/10.1016/j.est.2023.107040.

[38]

D. Zhang, M. Miao, H. Niu, and Z. Wei, “Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles,” ACS Nano 8, no. 5 (2014): 4571-4579.

[39]

J. Ren, W. Bai, G. Guan, Y. Zhang, and H. Peng, “Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber,” Advanced Materials 25, no. 41 (2013): 5965-5970.

[40]

A. G. Pandolfo and A. F. Hollenkamp, “Carbon Properties and Their Role in Supercapacitors,” Journal of Power Sources 157, no. 1 (2006): 11-27.

[41]

X. Chen, L. Qiu, J. Ren, et al., “Novel Electric Double-Layer Capacitor With a Coaxial Fiber Structure,” Advanced Materials 25, no. 44 (2013): 6436-6441.

[42]

H. Pan, J. Li, and Y. P. Feng, “Carbon Nanotubes for Supercapacitor,” Nanoscale Research Letters 5 (2010): 654-668.

[43]

G. Wang, L. Zhang, and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chemical Society Reviews 41, no. 2 (2012): 797-828.

[44]

Y. Zhou, C.-H. Wang, W. Lu, and L. Dai, “Recent Advances in Fiber-Shaped Supercapacitors and Lithium-Ion Batteries,” Advanced Materials 32, no. 5 (2020): 1902779, https://doi.org/10.1002/adma.201902779.

[45]

D. Yu, K. Goh, Q. Zhang, et al., “Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solid-State Micro-Supercapacitors With High Volumetric Energy Density,” Advanced Materials 26, no. 39 (2014): 6790-6797.

[46]

Y. Fu, X. Cai, H. Wu, et al., “Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage,” Advanced Materials 24, no. 42 (2012): 5713-5718, https://doi.org/10.1002/adma.201202930.

[47]

A. Sumboja, J. Liu, W. G. Zheng, Y. Zong, H. Zhang, and Z. Liu, “Electrochemical Energy Storage Devices for Wearable Technology: A Rationale for Materials Selection and Cell Design,” Chemical Society Reviews 47, no. 15 (2018): 5919-5945, https://doi.org/10.1039/c8cs00237a.

[48]

W. Son, S. Chun, J. M. Lee, et al., “Twist-Stabilized, Coiled Carbon Nanotube Yarns With Enhanced Capacitance,” ACS Nano 16, no. 2 (2022): 2661-2671, https://doi.org/10.1021/acsnano.1c09465.

[49]

Y. Zhang, W. Bai, J. Ren, et al., “Super-Stretchy Lithium-Ion Battery Based on Carbon Nanotube Fiber,” Journal of Materials Chemistry A 2, no. 29 (2014): 11054-11059, https://doi.org/10.1039/c4ta01878h.

[50]

Y. Zhang, W. Bai, X. Cheng, et al., “Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs,” Angewandte Chemie International Edition 53, no. 52 (2014): 14564-14568, https://doi.org/10.1002/anie.201409366.

[51]

Q. Liang, J. Wan, P. Ji, et al., “Continuous and Integrated PEDOT@Bacterial Cellulose/CNT Hybrid Helical Fiber With ‘Reinforced Cement-Sand’ Structure for Self-Stretchable Solid Supercapacitor,” Chemical Engineering Journal 427 (2022): 131904, https://doi.org/10.1016/j.cej.2021.131904.

[52]

W. Son, J. M. Lee, J. H. Choi, et al., “Double-Helical Carbon Nanotube-Wrapped Elastomeric Mandrel for Electrical Shortage-Free, One-Body Multifunctional Fiber Systems,” Advanced Functional Materials 34, no. 30 (2024): 2312033, https://doi.org/10.1002/adfm.202312033.

[53]

C. Choi, J. A. Lee, A. Y. Choi, et al., “Flexible Supercapacitor Made of Carbon Nanotube Yarn With Internal Pores,” Advanced Materials 26, no. 13 (2013): 2059-2065.

[54]

Q. Meng, K. Wang, W. Guo, J. Fang, Z. Wei, and X. She, “Thread-Like Supercapacitors Based on One-Step Spun Nanocomposite Yarns,” Small 10, no. 15 (2014): 3187-3193.

[55]

Z. Zhang, D. Zhang, H. Lin, and Y. Chen, “Flexible Fiber-Shaped Supercapacitors With High Energy Density Based on Self-Twisted Graphene Fibers,” Journal of Power Sources 433 (2019): 226711.

[56]

J. Zhang, Z. Zhao, Z. Zhang, et al., “Construction of Flexible Fiber-Shaped Boron-Doped Diamond Film and Its Supercapacitor Application,” Journal of Colloid and Interface Science 629 (2023): 813-821.

[57]

Z. Zhang, Z. Yang, Z. Wu, et al., “Weaving Efficient Polymer Solar Cell Wires Into Flexible Power Textiles,” Advanced Energy Materials 4, no. 11 (2014): 1301750.

[58]

X. Zhang, X. Chen, T. Bai, et al., “Recent Advances in Flexible Fiber-Shaped Supercapacitors,” Acta Physica Sinica 69, no. 17 (2020): 178201.

[59]

Z. Wu, K. Liu, C. Lv, et al., “Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms,” Small 14, no. 22 (2018): 1800414.

[60]

S. H. Gong, B. Q. Wang, Y. Xue, et al., “NiCoO2 and Polypyrrole Decorated Three-Dimensional Carbon Nanofiber Network With Coaxial Cable-Like Structure for High-Performance Supercapacitors,” Journal of Colloid and Interface Science 628 (2022): 343-355.

[61]

P. Yi, Y. Song, Z. Liu, et al., “Boosting Alkaline Urea Oxidation With a Nickel Sulfide/Cobalt Oxide Heterojunction Catalyst via Interface Engineering,” Advanced Composites and Hybrid Materials 6, no. 6 (2023): 228.

[62]

B. Chen, D. Kim, Z. Zhang, M. Lee, and K. Yong, “MOF-Derived NiCoZnP Nanoclusters Anchored on Hierarchical N-Doped Carbon Nanosheets Array as Bifunctional Electrocatalysts for Overall Water Splitting,” Chemical Engineering Journal 422 (2021): 130533.

[63]

S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy, and C. Gao, “Wet-Spinning of Ternary Synergistic Coaxial Fibers for High Performance Yarn Supercapacitors,” Journal of Materials Chemistry A 5, no. 43 (2017): 22489-22494.

[64]

X. Zhou, B. Chen, W. Wang, et al., “Core-Shell Heterostructured Ni(OH)2@Activation Zn─Co─Ni Layered Double Hydroxides Electrode for Flexible All-Solid-State Coaxial Fiber-Shaped Asymmetric Supercapacitors,” Journal of Colloid and Interface Science 661 (2024): 781-792, https://doi.org/10.1016/j.jcis.2024.02.013.

[65]

X. Cao, Y. Liu, Y. Zhong, et al., “Flexible Coaxial Fiber-Shaped Asymmetric Supercapacitors Based on Manganese, Nickel Co-Substituted Cobalt Carbonate Hydroxides,” Journal of Materials Chemistry A 8, no. 4 (2020): 1837-1848, https://doi.org/10.1039/c9ta11942f.

[66]

R. Li, P. Song, Z. Ji, et al., “Coaxial Core-Sheath Shaped Supercapacitor Based on Polypyrrole Functionalized Graphene/Carbon Nanotubes Hollow Fibers With Ultrahigh Length Specific Capacitance and Energy Density for Wearable Electronics,” Applied Surface Science 649 (2024): 159188, https://doi.org/10.1016/j.apsusc.2023.159188.

[67]

Y. Wang, C. Chen, H. Xie, et al., “3D-Printed All-Fiber Li-Ion Battery Toward Wearable Energy Storage,” Advanced Functional Materials 27, no. 43 (2017): 1703140, https://doi.org/10.1002/adfm.201703140.

[68]

J. Mueller, J. R. Raney, K. Shea, and J. A. Lewis, “Architected Lattices With High Stiffness and Toughness via Multicore-Shell 3D Printing,” Advanced Materials 30, no. 12 (2018): 1705001.

[69]

S. Yu, B. Patil, and H. Ahn, “Flexible, Fiber-Shaped Supercapacitors With Roll-Type Assembly,” Journal of Industrial and Engineering Chemistry 71 (2019): 220-227, https://doi.org/10.1016/j.jiec.2018.11.028.

[70]

S. Yu, B. Patil, and H. Ahn, “PANI//MoO3 Fiber-Shaped Asymmetric Supercapacitors With Roll-Type Configuration,” Fibers and Polymers 21, no. 3 (2020): 465-472, https://doi.org/10.1007/s12221-020-9811-1.

[71]

X. Du and K. Zhang, “Recent Progress in Fibrous High-Entropy Energy Harvesting Devices for Wearable Applications,” Nano Energy 101 (2022): 107600, https://doi.org/10.1016/j.nanoen.2022.107600.

[72]

J. Lee, H. Kwon, J. Seo, et al., “Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics,” Advanced Materials 27, no. 15 (2015): 2433-2439.

[73]

P. Liu, Z. Gao, L. Xu, et al., “Polymer Solar Cell Textiles With Interlaced Cathode and Anode Fibers,” Journal of Materials Chemistry A 6, no. 41 (2018): 19947-19953.

[74]

L. Kou, T. Huang, B. Zheng, et al., “Coaxial Wet-Spun Yarn Supercapacitors for High-Energy Density and Safe Wearable Electronics,” Nature Communications 5 (2014): 3754, https://doi.org/10.1038/ncomms4754.

[75]

J. Ren, X. Sun, P. Chen, Y. Wang, and H. Peng, “Research Progress of Fiber-Shaped Electrochemical Energy Storage Devices,” Chinese Science Bulletin 65, no. 28/29 (2020): 3150-3159.

[76]

H. Qiu, H. Cheng, J. Meng, G. Wu, and S. Chen, “Magnetothermal Microfluidic-Assisted Hierarchical Microfibers for Ultrahigh-Energy-Density Supercapacitors,” Angewandte Chemie International Edition 59, no. 20 (2020): 7934-7943, https://doi.org/10.1002/anie.202000951.

[77]

G. Sun, J. Zhou, F. Yu, Y. Zhang, J. H. L. Pang, and L. Zheng, “Electrochemical Capacitive Properties of CNT Fibers Spun From Vertically Aligned CNT Arrays,” Journal of Solid State Electrochemistry 16, no. 5 (2012): 1775-1780, https://doi.org/10.1007/s10008-011-1606-2.

[78]

L. Zhang, X. Zhang, J. Wang, et al., “Carbon Nanotube Fibers Decorated With MnO2 for Wire-Shaped Supercapacitor,” Molecules 26, no. 11 (2021): 3479, https://doi.org/10.3390/molecules26113479.

[79]

S. Lee, J.-G. Kim, H. Yu, et al., “Flexible Supercapacitor With Superior Length and Volumetric Capacitance Enabled by a Single Strand of Ultra-Thick Carbon Nanotube Fiber,” Chemical Engineering Journal 453 (2023): 139974, https://doi.org/10.1016/j.cej.2022.139974.

[80]

M. Li, B. Xu, L. Zheng, et al., “Highly Stable Polyaniline Array@ Partially Reduced Graphene Oxide Hybrid Fiber for High-Performance Flexible Supercapacitors,” Carbon 203 (2023): 455-461, https://doi.org/10.1016/j.carbon.2022.11.102.

[81]

H. Shi, S. Chen, W. Shi, et al., “High Performance Fiber-Shaped Supercapacitors Based on Core-Shell Fiber Electrodes With Adjustable Surface Wrinkles and Robust Interfaces,” Journal of Materials Chemistry A 9, no. 31 (2021): 16852-16859, https://doi.org/10.1039/d1ta04007c.

[82]

W. Zhou, K. Zhou, X. Liu, R. Hu, H. Liu, and S. Chen, “Flexible Wire-Like All-Carbon Supercapacitors Based on Porous Core-Shell Carbon Fibers,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2, no. 20 (2014): 7250-7255.

[83]

M.-H. Chiu, L.-Y. Lin, and Y.-J. Hsiao, “Improving Energy Storage Ability of Acid-Treated Carbon Fibers via Simple Sonication and Heat Treatments for Flexible Supercapacitors,” Energy Reports 7 (2021): 4205-4213, https://doi.org/10.1016/j.egyr.2021.06.074.

[84]

L. Wang, R. Liu, X. Li, et al., “Tailoring Electrochemically Active Sites in Carbon Fiber by Edge Oxygen Functionalized Strategy for High Performance Yarn Energy Storage,” Journal of Power Sources 491 (2021): 229379, https://doi.org/10.1016/j.jpowsour.2021.229579.

[85]

P. S. Shewale and K.-S. Yun, “Ternary Nanocomposites of PEDOT:PSS, RGO, and Urchin-Like Hollow Microspheres of NiCo2O4 for Flexible and Weavable Supercapacitors,” Materials Science and Engineering: B 292 (2023): 116404, https://doi.org/10.1016/j.mseb.2023.116404.

[86]

K. Guo, X. Wang, L. Hu, T. Zhai, H. Li, and N. Yu, “Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure,” ACS Applied Materials & Interfaces 10, no. 23 (2018): 19820-19827, https://doi.org/10.1021/acsami.8b05676.

[87]

X. Li, Y. Liu, M. Gao, X. Zhao, and K. Cai, “Fiber-Shaped All-Solid-State Symmetric Supercapacitors Based on Poly (3,4-ethylenedioxythiophene): Poly(Styrenesulfonate)/Carbonized Zeolitic Imidazolate Framework-8,” Journal of Power Sources 580 (2023): 233455, https://doi.org/10.1016/j.jpowsour.2023.233455.

[88]

T. Xu, D. Yang, S. Zhang, T. Zhao, M. Zhang, and Z. Z. Yu, “Antifreezing and Stretchable All-Gel-State Supercapacitor With Enhanced Capacitances Established by Graphene/PEDOT-Polyvinyl Alcohol Hydrogel Fibers With Dual Networks,” Carbon 171 (2021): 201-210, https://doi.org/10.1016/j.carbon.2020.08.071.

[89]

Z. Jiang, L. Sheng, Y. Lin, et al., “Weldable and Flexible Graphene Ribbon@Ni Fibers With Ultrahigh Length Capacitance for All-Solid-State Supercapacitors,” Chemical Engineering Journal 426 (2021): 131361, https://doi.org/10.1016/j.cej.2021.131361.

[90]

X. Huang, R. Yang, H. Yin, et al., “CuO@NiCo-LDH Core-Shell Structure for Flexible Fiber-Shaped Supercapacitor Electrode Material,” Journal of Energy Storage 74 (2023): 109319, https://doi.org/10.1016/j.est.2023.109319.

[91]

L. Naderi and S. Shahrokhian, “Nickel Vanadium Sulfide Grown on Nickel Copper Phosphide Dendrites/Cu Fibers for Fabrication of All-Solid-State Wire-Type Micro-Supercapacitors,” Chemical Engineering Journal 392 (2020): 124880, https://doi.org/10.1016/j.cej.2020.124880.

[92]

Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, and H. Peng, “Flexible, Weavable and Efficient Microsupercapacitor Wires Based on Polyaniline Composite Fibers Incorporated With Aligned Carbon Nanotubes,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 1, no. 2 (2013): 258-261.

[93]

K. Wang, Y. Chao, Z. Chen, S. Sayyar, C. Wang, and G. Wallace, “Wet Spinning of Hollow Graphene Fibers With High Capacitance,” Chemical Engineering Journal 453 (2023): 139920, https://doi.org/10.1016/j.cej.2022.139920.

[94]

L. Li, Y. Zhang, H. Lu, et al., “Cryopolymerization Enables Anisotropic Polyaniline Hybrid Hydrogels With Superelasticity and Highly Deformation-Tolerant Electrochemical Energy Storage,” Nature Communications 11, no. 1 (2020): 62, https://doi.org/10.1038/s41467-019-13959-9.

[95]

J. A. Lee, M. K. Shin, S. H. Kim, et al., “Ultrafast Charge and Discharge Biscrolled Yarn Supercapacitors for Textiles and Microdevices,” Nature Communications 4, no. 1 (2013): 1970.

[96]

M. Hu, Y. Liu, M. Zhang, H. Wei, and Y. Gao, “Wire-Type MnO2 Multilayer Graphene/Ni Electrode for High-Performance Supercapacitors,” Journal of Power Sources 335 (2016): 113-120, https://doi.org/10.1016/j.jpowsour.2016.10.043.

[97]

V. T. Le, H. Kim, A. Ghosh, et al., “Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes,” ACS Nano 7, no. 7 (2013): 5940-5947.

[98]

Y. Meng, Y. Zhao, C. Hu, et al., “All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles,” Advanced Materials 25, no. 16 (2013): 2326-2331.

[99]

N. J. Coville, S. D. Mhlanga, E. N. Nxumalo, and A. Shaikjee, “A Review of Shaped Carbon Nanomaterials,” South African Journal of Science 107, no. 3/4 (2011): 44-58, https://doi.org/10.4102/sajs.v107i3/4.418.

[100]

A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, et al., “Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V With High Power and Energy Density,” Advanced Materials 22, no. 35 (2010): E235-E241.

[101]

M. Serrapede, F. Seller, P. Zaccagnini, et al., “Tunable All-Solid-State Wire-Shaped High Power Device Based on Carbon Nanotubes Yarn,” Carbon 213 (2023): 118283, https://doi.org/10.1016/j.carbon.2023.118283.

[102]

K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, “High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays,” Advanced Materials 25, no. 10 (2013): 1494-1498.

[103]

M. Pal and K. M. Subhedar, “CNT Yarn Based Solid State Linear Supercapacitor With Multi-Featured Capabilities for Wearable and Implantable Devices,” Energy Storage Materials 57 (2023): 136-170, https://doi.org/10.1016/j.ensm.2023.01.051.

[104]

H. Wang, C. Wang, M. Jian, et al., “Superelastic Wire-Shaped Supercapacitor Sustaining 850% Tensile Strain Based on Carbon Nanotube@Graphene Fiber,” Nano Research 11, no. 5 (2018): 2347-2356, https://doi.org/10.1007/s12274-017-1782-1.

[105]

Q. Chen, Y. Meng, C. Hu, et al., “MnO2-Modified Hierarchical Graphene Fiber Electrochemical Supercapacitor,” Journal of Power Sources 247 (2014): 32-39.

[106]

X. Niu, G. Zhu, Z. Yin, et al., “Fiber-Based All-Solid-State Asymmetric Supercapacitors Based on Co3O4@MnO2 Core/Shell Nanowire Arrays,” Journal of Materials Chemistry A 5, no. 44 (2017): 22939-22944.

[107]

M. Niu, Y. Zhao, C. Sui, et al., “Mechanical Properties of Twisted CNT Fibers: A Molecular Dynamic Study,” Materials Today Communications 34 (2023): 105378, https://doi.org/10.1016/j.mtcomm.2023.105378.

[108]

B. Vigolo, A. Pénicaud, C. Coulon, et al., “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, no. 5495 (2000): 1331-1334.

[109]

A. Ghemes, Y. Minami, J. Muramatsu, M. Okada, H. Mimura, and Y. Inoue, “Fabrication and Mechanical Properties of Carbon Nanotube Yarns Spun From Ultra-Long Multi-Walled Carbon Nanotube Arrays,” Carbon 50, no. 12 (2012): 4579-4587.

[110]

Y. L. Li, I. A. Kinloch, and A. H. Windle, “Direct Spinning of Carbon Nanotube Fibers From Chemical Vapor Deposition Synthesis,” Science 304, no. 5668 (2004): 276-278, https://doi.org/10.1126/science.1094982.

[111]

T. Chen, L. Qiu, H. G. Kia, Z. Yang, and H. Peng, “Designing Aligned Inorganic Nanotubes at the Electrode Interface: Towards Highly Efficient Photovoltaic Wires,” Advanced Materials 24, no. 34 (2012): 4623-4628, https://doi.org/10.1002/adma.201201893.

[112]

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews 110, no. 1 (2010): 132-145.

[113]

D. R. Son, A. V. Raghu, K. R. Reddy, and H. M. Jeong, “Compatibility of Thermally Reduced Graphene With Polyesters,” Journal of Macromolecular Science, Part B 55, no. 11 (2016): 1099-1110.

[114]

S. H. Choi, D. H. Kim, A. V. Raghu, et al., “Properties of Graphene/Waterborne Polyurethane Nanocomposites Cast From Colloidal Dispersion Mixtures,” Journal of Macromolecular Science, Part B 51, no. 1 (2012): 197-207.

[115]

K.-T. Chen, Q.-Y. Li, and K. Takahashi, “Slip Flow on Graphene: Current Status and Perspective,” Journal of Thermal Science 31, no. 4 (2022): 1115-1134, https://doi.org/10.1007/s11630-022-1668-8.

[116]

E. Frackowiak, “Carbon Materials for Supercapacitor Application,” Physical Chemistry Chemical Physics 9, no. 15 (2007): 1774-1785.

[117]

Z. Dong, C. Jiang, H. Cheng, et al., “Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers,” Advanced Materials 24, no. 14 (2012): 1856-1861, https://doi.org/10.1002/adma.201200170.

[118]

Z. Xu and C. Gao, “Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres,” Nature Communications 2, no. 1 (2011): 571.

[119]

Z. Xu, H. Sun, X. Zhao, and C. Gao, “Ultrastrong Fibers Assembled From Giant Graphene Oxide Sheets,” Advanced Materials 25, no. 2 (2013): 188-193.

[120]

D. Yu, K. Goh, H. Wang, et al., “Scalable Synthesis of Hierarchically Structured Carbon Nanotube-Graphene Fibres for Capacitive Energy Storage,” Nature Nanotechnology 9, no. 7 (2014): 555-562.

[121]

H. Sun, X. You, J. Deng, et al., “Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wire-Shaped Miniature Energy Devices,” Advanced Materials 26, no. 18 (2014): 2868-2873.

[122]

G. Qu, J. Cheng, X. Li, et al., “A Fiber Supercapacitor With High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode,” Advanced Materials 28, no. 19 (2016): 3646-3652, https://doi.org/10.1002/adma.201600689.

[123]

P. Song, C. Xi, S. Premlatha, et al., “Sword/Scabbard-Shaped Asymmetric All-Solid-State Supercapacitors Based on PPy-MWCNTs-Silk and Hollow Graphene Tube for Wearable Applications,” Chemical Engineering Journal 411 (2021): 128522.

[124]

W. Lu, Q. Deng, M. Liu, B. Ding, Z. Xiong, and L. Qiu, “Coaxial Wet Spinning of Boron Nitride Nanosheet-Based Composite Fibers With Enhanced Thermal Conductivity and Mechanical Strength,” Nano-Micro Letters 16, no. 2 (2024): 2311-6706.

[125]

M. Rong, D. Chen, H. Hu, et al., “Stretchable and Self-Healable Fiber-Shaped Conductors Suitable for Harsh Environments,” Small 19, no. 50 (2023): 2304353, https://doi.org/10.1002/smll.202304353.

[126]

J. Foroughi, G. M. Spinks, and G. G. Wallace, Conducting Polymer Fibers (2015).

[127]

D. Yuan, B. Li, J. Cheng, et al., “Twisted Yarns for Fiber-Shaped Supercapacitors Based on Wetspun PEDOT:PSS Fibers From Aqueous Coagulation,” Journal of Materials Chemistry A 4, no. 30 (2016): 11616-11624.

[128]

Y. Jiang and J. Liu, “Definitions of Pseudocapacitive Materials: A Brief Review,” Energy & Environmental Materials 2, no. 1 (2019): 30-37.

[129]

C. Zhao, X. Jia, K. Shu, C. Yu, G. G. Wallace, and C. Wang, “Conducting Polymer Composites for Unconventional Solid-State Supercapacitors,” Journal of Materials Chemistry A 8, no. 9 (2020): 4677-4699, https://doi.org/10.1039/c9ta13432h.

[130]

R. Barbucci, D. Pasqui, G. Giani, et al., “A Novel Strategy for Engineering Hydrogels With Ferromagnetic Nanoparticles as Crosslinkers of the Polymer Chains. Potential Applications as a Targeted Drug Delivery System,” Soft Matter 7, no. 12 (2011): 5558-5565.

[131]

X. Tong, T. Shan, Q. Du, et al., “Electroresponsive Stretchable Liquid-Crystal Device With Deformable Gel Network,” Advanced Electronic Materials 5, no. 8 (2019): 1900373.

[132]

M. F. Kalkan, M. Artan, N. F. Yilmaz, and A. Yavuz, “Mn─Ni-Based Coating on Flexible Graphite Fiber With High Length Capacitance for Flexible Supercapacitor Applications,” Journal of Energy Storage 84 (2024): 110778, https://doi.org/10.1016/j.est.2024.110778.

[133]

H. Rao Goli, M. V. Basaveswara Rao, N. Purushotham Reddy, et al., “Ternary Metal Oxysulfide-Based 3D Yarn Electrodes for Aqueous Cable-Type Hybrid Electrochemical Cells,” Chemical Engineering Journal 446 (2022): 137347, https://doi.org/10.1016/j.cej.2022.137347.

[134]

X. Li, X. Li, J. Cheng, et al., “Fiber-Shaped Solid-State Supercapacitors Based on Molybdenum Disulfide Nanosheets for a Self-Powered Photodetecting System,” Nano Energy 21 (2016): 228-237.

[135]

J. Y. Lu, J. Q. Zhang, X. S. Wang, et al., “A Review of Advanced Electrolytes for Supercapacitors,” Journal of Energy Storage 103 (2024): 114338, https://doi.org/10.1016/j.est.2024.114338.

[136]

N.-S. Choi, Z. Chen, S. A. Freunberger, et al., “Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors,” Angewandte Chemie International Edition 51, no. 40 (2012): 9994-10024, https://doi.org/10.1002/anie.201201429.

[137]

J. B. Goodenough, “Energy Storage Materials: A Perspective,” Energy Storage Materials 1 (2015): 158-161.

[138]

H. Sun, Y. Jiang, S. Xie, et al., “Integrating Photovoltaic Conversion and Lithium Ion Storage Into a Flexible Fiber,” Journal of Materials Chemistry A 4, no. 20 (2016): 7601-7605, https://doi.org/10.1039/c6ta01514j.

[139]

Y. Zhang, Y. Wang, L. Wang, et al., “A Fiber-Shaped Aqueous Lithium Ion Battery With High Power Density,” Journal of Materials Chemistry A 4, no. 23 (2016): 9002-9008, https://doi.org/10.1039/c6ta03477b.

[140]

L. L. Zhang and X. S. Zhao, “Carbon-Based Materials as Supercapacitor Electrodes,” Chemical Society Reviews 38, no. 9 (2009): 2520-2531.

[141]

B. Deng, L. Fang, K. Fang, X. Han, and Y. Liang, “Scalable Preparation of MWCNTs/PAN Conductive Composite Fibers With Tai Chi Structure for Thermotherapy Textiles,” Composites Science and Technology 232 (2023): 109866, https://doi.org/10.1016/j.compscitech.2022.109866.

[142]

G. Qu, Y. Zhou, J. Zhang, L. Xiong, Q. Yue, and Y. Kang, “Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-High-Capacitance Fiber Supercapacitors,” Iscience 23, no. 8 (2020): 101396, https://doi.org/10.1016/j.isci.2020.101396.

[143]

K.-W. Kang, C.-W. Choi, and J.-W. Jin, “A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties,” Polymers 13, no. 22 (2021): 4048, https://doi.org/10.3390/polym13224048.

[144]

B. Wang, X. Fang, H. Sun, et al., “Fabricating Continuous Supercapacitor Fibers With High Performances by Integrating All Building Materials and Steps Into One Process,” Advanced Materials 27, no. 47 (2015): 7854-7860, https://doi.org/10.1002/adma.201503441.

[145]

J. He, C. Lu, H. Jiang, et al., “Scalable Production of High-Performing Woven Lithium-Ion Fibre Batteries,” Nature 597, no. 7874 (2021): 57-63.

[146]

Y. Chang, Q. Cao, and B. J. Venton, “3D Printing for Customized Carbon Electrodes,” Current Opinion in Electrochemistry 38 (2023): 101228, https://doi.org/10.1016/j.coelec.2023.101228.

[147]

M. Cheng, R. Deivanayagam, and R. Shahbazian-Yassar, “3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures,” Batteries & Supercaps 3, no. 2 (2020): 130-146, https://doi.org/10.1002/batt.201900130.

[148]

Y. Li, Y. Wang, Y. Liu, et al., “In-Situ Interface Reinforcement for 3D Printed Fiber Electrodes,” Energy Storage Materials 57 (2023): 497-507, https://doi.org/10.1016/j.ensm.2023.02.033.

[149]

L. Wang, X. Fu, J. He, et al., “Application Challenges in Fiber and Textile Electronics,” Advanced Materials 32, no. 5 (2020): 1901971, https://doi.org/10.1002/adma.201901971.

[150]

T. Khudiyev, J. T. Lee, J. R. Cox, et al., “100 m Long Thermally Drawn Supercapacitor Fibers With Applications to 3D Printing and Textiles,” Advanced Materials 32, no. 49 (2020): 2004971, https://doi.org/10.1002/adma.202004971.

[151]

X. Yang, Y. A. Shen, Z. Wang, et al., “Flexible Fiber Sensors for Monitoring Multi-Point and Distributed Stress and Strain,” Advanced Materials Technologies 9, no. 3 (2024): 2301854, https://doi.org/10.1002/admt.202301854.

[152]

A. R. Shirvan, A. Nouri, and A. Sutti, “A Perspective on the Wet Spinning Process and Its Advancements in Biomedical Sciences,” European Polymer Journal 181 (2022): 111681, https://doi.org/10.1016/j.eurpolymj.2022.111681.

[153]

D. Yang, A. Fadeev, P. N. Adams, and B. R. Mattes, Controlling Macrovoid Formation in Wet-Spun Polyaniline Fibers (2001), 59-71.

[154]

Z. Yang, W. Zhao, Y. Niu, et al., “Direct Spinning of High-Performance Graphene Fiber Supercapacitor With a Three-Ply Core-Sheath Structure,” Carbon 132 (2018): 241-248, https://doi.org/10.1016/j.carbon.2018.02.041.

[155]

C. Ma, L. Wu, M. Dirican, et al., “Carbon Black-Based Porous Sub-Micron Carbon Fibers for Flexible Supercapacitors,” Applied Surface Science 537 (2021): 147914, https://doi.org/10.1016/j.apsusc.2020.147914.

[156]

J. H. Tang, X. H. Zheng, B. B. Ding, et al., “MXene/PANI Composite Fiber-Based Asymmetric Supercapacitors for Self-Powered Energy Storage System,” Materials Letters 355 (2024): 135494, https://doi.org/10.1016/j.matlet.2023.135494.

[157]

D. O. Reid, R. E. Smith, J. Garcia-Torres, J. F. Watts, and C. Crean, “Solvent Treatment of Wet-Spun PEDOT:PSS Fibers for Fiber-Based Wearable pH Sensing,” Sensors 19, no. 19 (2019): 4213, https://doi.org/10.3390/s19194213.

[158]

Q. Wang, Y. Yang, W. Chen, et al., “Reliable Coaxial Wet Spinning Strategy to Fabricate Flexible MnO2-based Fiber Supercapacitors,” Journal of Alloys and Compounds 935 (2023): 168110, https://doi.org/10.1016/j.jallcom.2022.168110.

[159]

Y. Zhao, C. Jiang, C. Hu, et al., “Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers,” ACS Nano 7, no. 3 (2013): 2406-2412.

[160]

Z. Yang, Y. Jia, Y. Niu, et al., “One-Step Wet-Spinning Assembly of Twisting-Structured Graphene/Carbon Nanotube Fiber Supercapacitor,” Journal of Energy Chemistry 51 (2020): 434-441, https://doi.org/10.1016/j.jechem.2020.02.023.

[161]

Y. Hong, X.-L. Cheng, G.-J. Liu, et al., “One-Step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile,” Chinese Journal of Polymer Science 37, no. 8 (2019): 737-743, https://doi.org/10.1007/s10118-019-2301-5.

[162]

J. A. Lewis and G. M. Gratson, “Direct Writing in Three Dimensions,” Materials Today 7, no. 7/8 (2004): 32-39.

[163]

J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Advanced Functional Materials 16, no. 17 (2006): 2193-2204.

[164]

M. M. Ovhal, H. B. Lee, V. V. Satale, B. Tyagi, S. Chowdhury, and J. W. Kang, “One-Meter-Long, All-3D-Printed Supercapacitor Fibers Based on Structurally Engineered Electrode for Wearable Energy Storage,” Advanced Energy Materials 14, no. 6 (2024): 2303053, https://doi.org/10.1002/aenm.202303053.

[165]

Y. Shen, C. Wang, X. Yang, et al., “New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications,” Materials 14, no. 21 (2021): 6306, https://doi.org/10.3390/ma14216306.

[166]

Y. N. Shen, Z. Wang, Z. X. Wang, et al., “Thermally Drawn Multifunctional Fibers: Toward the Next Generation of Information Technology,” InfoMat 4, no. 7 (2022): e12318, https://doi.org/10.1002/inf2.12318.

[167]

Y. Nishiyama and K. Sezaki, Smartwatch-Based Sensing Framework for Continuous Data Collection: Design and Implementation (2023), 620-625.

[168]

Y. Liang, C. Z. Zhao, H. Yuan, et al., “A Review of Rechargeable Batteries for Portable Electronic Devices,” InfoMat 1, no. 1 (2019): 6-32.

[169]

Z. P. Yang, Y. H. Jia, Y. T. Niu, et al., “Wet-Spun PVDF Nanofiber Separator for Direct Fabrication of Coaxial Fiber-Shaped Supercapacitors,” Chemical Engineering Journal 400 (2020): 125835, https://doi.org/10.1016/j.cej.2020.125835.

[170]

C. L. Su, X. Yang, J. N. Li, et al., “One-Step Braiding of Flexible Coaxial Asymmetric Fibrous Supercapacitors,” ACS Applied Energy Materials 5, no. 7 (2022): 8472-8482, https://doi.org/10.1021/acsaem.2c01023.

[171]

B. Shi, L. Li, A. Chen, T. C. Jen, X. Liu, and G. Shen, “Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors With Improved Performance,” Nano-Micro Letters 14, no. 1 (2022): 34, https://doi.org/10.1007/s40820-021-00757-6.

[172]

F.-L. Yi, F.-C. Meng, Y.-Q. Li, et al., “Highly Stretchable CNT Fiber/PAAm Hydrogel Composite Simultaneously Serving as Strain Sensor and Supercapacitor,” Composites, Part B: Engineering 198 (2020): 108246, https://doi.org/10.1016/j.compositesb.2020.108246.

[173]

J. Zhao, Y. Zhang, Y. Huang, et al., “3D Printing Fiber Electrodes for an All-Fiber Integrated Electronic Device via Hybridization of an Asymmetric Supercapacitor and a Temperature Sensor,” Advanced Science 5, no. 11 (2018): 1801114, https://doi.org/10.1002/advs.201801114.

[174]

Y. Shen, X. Han, P. Zhang, et al., “Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles,” Advanced Fiber Materials 5, no. 4 (2023): 1105-1140, https://doi.org/10.1007/s42765-023-00267-7.

[175]

S. Yu, W. Son, G. Jeon, et al., “Electromechanical Stability, Electrochemical Energy Storage, and Mechano-Electrochemical Energy Harvesting of Carbon Nanotube Buckles,” Composites, Part B: Engineering 256 (2023): 110664, https://doi.org/10.1016/j.compositesb.2023.110664.

[176]

C. He, J. Cheng, C. Wu, and B. Wang, “Bifunctional Shared Fibers for High-Efficiency Self-Powered Fiber-Shaped Photocapacitors,” Advanced Fiber Materials 5, no. 1 (2023): 130-137, https://doi.org/10.1007/s42765-022-00218-8.

[177]

M. Liu, Z. Cong, X. Pu, et al., “High-Energy Asymmetric Supercapacitor Yarns for Self-Charging Power Textiles,” Advanced Functional Materials 29, no. 41 (2019): 1806298, https://doi.org/10.1002/adfm.201806298.

[178]

Z. Wang, J. Cheng, H. Huang, and B. Wang, “Flexible Self-Powered Fiber-Shaped Photocapacitors With Ultralong Cyclelife and Total Energy Efficiency of 5.1%,” Energy Storage Materials 24 (2020): 255-264, https://doi.org/10.1016/j.ensm.2019.08.011.

[179]

J. S. Chae, N. S. Heo, C. H. Kwak, et al., “A Biocompatible Implant Electrode Capable of Operating in Body Fluids for Energy Storage Devices,” Nano Energy 34 (2017): 86-92, https://doi.org/10.1016/j.nanoen.2017.02.018.

[180]

H. J. Sim, C. Choi, D. Y. Lee, et al., “Biomolecule Based Fiber Supercapacitor for Implantable Device,” Nano Energy 47 (2018): 385-392, https://doi.org/10.1016/j.nanoen.2018.03.011.

[181]

Y. Jang, T. Park, E. Kim, J. W. Park, D. Y. Lee, and S. J. Kim, “Implantable Biosupercapacitor Inspired by the Cellular Redox System,” Angewandte Chemie International Edition 60, no. 19 (2021): 10563-10567, https://doi.org/10.1002/anie.202101388.

[182]

H. Y. Ang, Y. Y. Huang, S. T. Lim, P. Wong, M. Joner, and N. Foin, “Mechanical Behavior of Polymer-Based vs. Metallic-Based Bioresorbable Stents,” Journal of Thoracic Disease 9 (2017): S923-S934, https://doi.org/10.21037/jtd.2017.06.30.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/