Principle and Structural Design of MXene-Based Sensors Toward Smart Life

Tianyue Xu , Qinglong He , Hao Chen , Yiwen Chen , Chuijin Zeng , Zhuo Li , Shungui Deng , Chuanfang Zhang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 284 -299.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 284 -299. DOI: 10.1002/idm2.12238
REVIEW

Principle and Structural Design of MXene-Based Sensors Toward Smart Life

Author information +
History +
PDF

Abstract

Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, known as MXenes, have been widely studied at the frontier of 2D materials. The excellent mechanical properties, electrical conductivity, excellent photoelectrical performance, and good thermal stability of MXenes enable wide applications in many fields, including but not limited to energy storage, supercapacitors, EMI shielding, catalysis, optoelectronics, and sensors. In particular, MXene-based materials exhibit exceptional sensing performance due to their unique tunable surface chemistry, 2D architecture, and exotic electrical/mechanical/electromechanical properties, which are rarely found in other materials. This paper discusses the MXene sensing properties and their mechanisms in different types of sensors, including piezoresistive sensors, flexible sensors, gas sensors, and biosensors. The unique roles of these MXene-based sensors toward the future of smart living are also outlined. This article may shed light on the rational design of MXene-based sensors and provide valuable references for corresponding scenario applications.

Keywords

gas sensors / MXene / piezoresistive sensors / two-dimensional materials / wearable electronics

Cite this article

Download citation ▾
Tianyue Xu, Qinglong He, Hao Chen, Yiwen Chen, Chuijin Zeng, Zhuo Li, Shungui Deng, Chuanfang Zhang. Principle and Structural Design of MXene-Based Sensors Toward Smart Life. Interdisciplinary Materials, 2025, 4(2): 284-299 DOI:10.1002/idm2.12238

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Liu, J. Li, M. Li, et al., “MXene-Coated Air-Permeable Pressure-Sensing Fabric for Smart Wear,” ACS Applied Materials & Interfaces 12 (2020): 46446-46454.

[2]

S. J. Kim, H. J. Koh, C. E. Ren, et al., “Metallic Ti3C2Tx MXene Gas Sensors With Ultrahigh Signal-to-Noise Ratio,” ACS Nano 12 (2018): 986-993.

[3]

X. Lin, D. Song, T. Shao, et al., “A Multifunctional Biosensor via MXene Assisted by Conductive Metal-Organic Framework for Healthcare Monitoring,” Advanced Functional Materials 34 (2024): 2311637.

[4]

Y. Cai, J. Shen, G. Ge, et al., “Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor With Ultrahigh Sensitivity and Tunable Sensing Range,” ACS Nano 12 (2018): 56-62.

[5]

C. Zhao, Y. Fang, H. Chen, et al., “Ultrathin Mo2S3 Nanowire Network for High-Sensitivity Breathable Piezoresistive Electronic Skins,” ACS Nano 17 (2023): 4862-4870.

[6]

S. Deng, Y. Li, S. Li, et al., “A Multifunctional Flexible Sensor Based on PI-MXene/SrTiO3 Hybrid Aerogel for Tactile Perception,” Innovation 5 (2024): 100596.

[7]

M. Naguib, M. Kurtoglu, V. Presser, et al., “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Advanced Materials 23 (2011): 4248-4253, https://doi.org/10.1002/adma.201102306.

[8]

M. Naguib, M. W. Barsoum, and Y. Gogotsi, “Ten Years of Progress in the Synthesis and Development of Mxenes,” Advanced Materials 33 (2021): 2103393.

[9]

C. E. Shuck, A. Sarycheva, M. Anayee, et al., “Scalable Synthesis of Ti3C2Tx MXene,” Advanced Engineering Materials 22 (2020): 1901241, https://doi.org/10.1002/adem.201901241.

[10]

C. Zhang, L. McKeon, M. P. Kremer, et al., “Additive-Free MXene Inks and Direct Printing of Micro-Supercapacitors,” Nature Communications 10 (2019): 1795, https://doi.org/10.1038/s41467-019-09398-1.

[11]

M. Seredych, C. E. Shuck, D. Pinto, et al., “High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis,” Chemistry of Materials 31 (2019): 3324-3332.

[12]

Z. Li, J. Wang, Y. Xu, et al., “Green and Sustainable Cellulose-Derived Humidity Sensors: A Review,” Carbohydrate Polymers 270 (2021): 118385.

[13]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive Two-Dimensional Titanium Carbide ‘Clay’ With High Volumetric Capacitance,” Nature 516 (2014): 78-81, https://doi.org/10.1038/nature13970.

[14]

O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M. W. Barsoum, “Kinetics of Aluminum Extraction From Ti3AlC2 in Hydrofluoric Acid,” Materials Chemistry and Physics 139 (2013): 147-152.

[15]

T. Guo, D. Zhou, S. Deng, et al., “Rational Design of Ti3C2Tx MXene Inks for Conductive, Transparent Films,” ACS Nano 17 (2023): 3737-3749, https://doi.org/10.1021/acsnano.2c11180.

[16]

Y. Ma, N. Liu, L. Li, et al., “A Highly Flexible and Sensitive Piezoresistive Sensor Based on Mxene With Greatly Changed Interlayer Distances,” Nature Communications 8 (2017): 1207.

[17]

J. Halim, S. Kota, M. R. Lukatskaya, et al., “Synthesis and Characterization of 2D Molybdenum Carbide (MXene),” Advanced Functional Materials 26 (2016): 3118-3127.

[18]

K. R. G. Lim, A. D. Handoko, S. K. Nemani, et al., “Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion,” ACS Nano 14 (2020): 10834-10864.

[19]

R. Zhang, J. Dong, W. Zhang, et al., “Synergistically Coupling of 3D FeNi-LDH Arrays With Ti3C2Tx-MXene Nanosheets Toward Superior Symmetric Supercapacitor,” Nano Energy 91 (2022): 106633.

[20]

X. Chu, Y. Wang, L. Cai, et al., “Boosting the Energy Density of Aqueous Mxene-Based Supercapacitor by Integrating 3D Conducting Polymer Hydrogel Cathode,” SusMat 2 (2022): 379-390.

[21]

X. Gao, X. Du, T. S. Mathis, et al., “Maximizing Ion Accessibility in MXene-Knotted Carbon Nanotube Composite Electrodes for High-Rate Electrochemical Energy Storage,” Nature Communications 11 (2020): 6160.

[22]

Z. Du, K. Chen, Y. Zhang, et al., “Engineering Multilayered Mxene/Electrospun Poly (Lactic Acid) Membrane With Increscent Electromagnetic Interference (EMI) Shielding for Integrated Joule Heating and Energy Generating,” Composites Communications 26 (2021): 100770.

[23]

Z. Fan, D. Wang, Y. Yuan, et al., “A Lightweight and Conductive Mxene/Graphene Hybrid Foam for Superior Electromagnetic Interference Shielding,” Chemical Engineering Journal 381 (2020): 122696.

[24]

X. Chen, D. Zhang, H. Lin, et al., “MXene Catalyzed Faraday Cage-Type Electrochemiluminescence Immunosensor for the Detection of Genetically Modified Crops,” Sensors and Actuators B: Chemical 346 (2021): 130549.

[25]

Q. Wang, X. Pan, C. Lin, et al., “Modified Ti3C2Tx (MXene) Nanosheet-Catalyzed Self-Assembled, Anti-Aggregated, Ultra-Stretchable, Conductive Hydrogels for Wearable Bioelectronics,” Chemical Engineering Journal 401 (2020): 126129.

[26]

T. Guo, D. Zhou, and C. Zhang, “Perspectives on Electrochemical Nitrogen Fixation Catalyzed by Two-Dimensional Mxenes,” Materials Reports: Energy 2 (2022): 100076.

[27]

H. Zhou, S. J. Han, H. D. Lee, et al., “Overcoming the Limitations of MXene Electrodes for Solution-Processed Optoelectronic Devices,” Advanced Materials 34 (2022): 2206377.

[28]

X. Chen, Z. Shi, Y. Tian, et al., “Two-Dimensional Ti3C2 MXene-Based Nanostructures for Emerging Optoelectronic Applications,” Materials Horizons 8 (2021): 2929-2963.

[29]

Y. Yue, N. Liu, W. Liu, et al., “3D Hybrid Porous Mxene-Sponge Network and Its Application in Piezoresistive Sensor,” Nano Energy 50 (2018): 79-87.

[30]

E. Lee, A. VahidMohammadi, B. C. Prorok, Y. S. Yoon, M. Beidaghi, and D. J. Kim, “Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene),” ACS Applied Materials & Interfaces 9 (2017): 37184-37190.

[31]

F. Mumtaz, M. Roman, B. Zhang, et al., “MXene (Ti3C2Tx) Coated Highly-Sensitive D-Shaped Photonic Crystal Fiber Based SPR-Biosensor,” Photonics and Nanostructures-Fundamentals and Applications 52 (2022): 101090.

[32]

Y. Wang, Y. Yue, F. Cheng, et al., “Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors,” ACS Nano 16 (2022): 1734-1758.

[33]

M. Chao, Y. Wang, D. Ma, et al., “Wearable Mxene Nanocomposites-Based Strain Sensor With Tile-Like Stacked Hierarchical Microstructure for Broad-Range Ultrasensitive Sensing,” Nano Energy 78 (2020): 105187.

[34]

M. Saeidi-Javash, Y. Du, M. Zeng, et al., “All-Printed MXene-Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing,” ACS Applied Electronic Materials 3 (2021): 2341-2348.

[35]

B. Peng, X. Wu, C. Zhang, et al., “A Flexible and Fully Integrated Wearable Pressure Sensing Chip System for Multi-Scenario Applications,” Journal of Materials Chemistry A 9 (2021): 26875-26884.

[36]

O. Salim, K. A. Mahmoud, K. K. Pant, and R. K. Joshi, “Introduction to MXenes: Synthesis and Characteristics,” Materials Today Chemistry 14 (2019): 100191.

[37]

B. Xu and Y. Gogotsi, “MXenes-The Fastest Growing Materials Family in the Two Dimensional World,” Chinese Chemical Letters 31 (2020): 919-921.

[38]

M. Naguib, O. Mashtalir, J. Carle, et al., “Two-Dimensional Transition Metal Carbides,” ACS Nano 6 (2012): 1322-1331.

[39]

M. Ghidiu, M. Naguib, C. Shi, et al., “Synthesis and Characterization of Two-Dimensional Nb4C3 (MXene),” Chemical Communications 50 (2014): 9517-9520.

[40]

H. Jing, H. Yeo, B. Lyu, et al., “Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization With Diazonium,” ACS Nano 15 (2021): 1388-1396.

[41]

T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, “MXene Terminating Groups O,-F or -Oh,-F or O,-Oh,-F, or O,-Oh,-Cl?,” Journal of Energy Chemistry 76 (2023): 90-104.

[42]

X. Wang, G. M. C. Ong, M. Naguib, and J. Wu, “Theoretical Insights Into Mxene Termination and Surface Charge Regulation,” Journal of Physical Chemistry C 125 (2021): 21771-21779.

[43]

X. Liu, T. Chen, Y. Xue, et al., “Nanoarchitectonics of MXene/Semiconductor Heterojunctions Toward Artificial Photosynthesis via Photocatalytic CO2 Reduction,” Coordination Chemistry Reviews 459 (2022): 214440.

[44]

C. Shi, Z. Liu, Z. Tian, et al., “Regulated Layer Spacing and Functional Surface Group of MXene Film by Hexamethylenetetramine for High-Performance Supercapacitors,” Applied Surface Science 596 (2022): 153632.

[45]

C. Peng, T. Zhou, P. Wei, et al., “Regulation of the Rutile/Anatase TiO2 Phase Junction In-Situ Grown on -OH Terminated Ti3C2T (MXene) Towards Remarkably Enhanced Photocatalytic Hydrogen Evolution,” Chemical Engineering Journal 439 (2022): 135685.

[46]

C. Wu, W. Fang, Q. Cheng, et al., “MXene-Regulated Perovskite Vertical Growth for High-Performance Solar Cells,” Angewandte Chemie International Edition 61 (2022): e202210970.

[47]

A. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, and A. Sinitskii, “Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes,” Advanced Electronic Materials 2 (2016): 1600255.

[48]

A. VahidMohammadi, J. Rosen, and Y. Gogotsi, “The World of Two-Dimensional Carbides and Nitrides (MXenes),” Science 372 (2021): eabf1581, https://doi.org/10.1126/science.abf1581.

[49]

A. L. Ivanovskii and A. N. Enyashin, “Graphene-Like Transition-Metal Nanocarbides and Nanonitrides,” Russian Chemical Reviews 82 (2013): 735-746.

[50]

A. Zhou, Z. Li, L. Li, L. Wang, and S. Li, “Preparation and Microstructure of Ti3SiC2 Bonded Cubic Boron Nitride Superhard Composites,” Journal of the Chinese Ceramic Society 42 (2014): 220-224.

[51]

M. Xiang, Z. Shen, J. Zheng, et al., “Gas-Phase Synthesis of Ti2CCl2 Enables an Efficient Catalyst for Lithium-Sulfur Batteries,” Innovation 5 (2024): 100540.

[52]

D. Wang, C. Zhou, A. S. Filatov, et al., “Direct Synthesis and Chemical Vapor Deposition of 2D Carbide and Nitride Mxenes,” Science 379 (2023): 1242-1247.

[53]

T. Zhang, K. Shevchuk, R. J. Wang, H. Kim, J. Hourani, and Y. Gogotsi, “Delamination of Chlorine-Terminated MXene Produced Using Molten Salt Etching,” Chemistry of Materials 36 (2024): 1998-2006, https://doi.org/10.1021/acs.chemmater.3c02872.

[54]

M. Li, J. Lu, K. Luo, et al., “Element Replacement Approach by Reaction With Lewis Acidic Molten Salts to Synthesize Nanolaminated Max Phases and MXenes,” Journal of the American Chemical Society 141 (2019): 4730-4737.

[55]

Z. Du, Z. Cheng, Q. Zhao, et al., Transformation and Reconstruction Towards Two-Dimensional Atomic Laminates. arXiv preprint arXiv:2302.07718 (2023).

[56]

M. Amjadi, K. U. Kyung, I. Park, and M. Sitti, “Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review,” Advanced Functional Materials 26 (2016): 1678-1698.

[57]

H. Zhang, D. Zhang, B. Zhang, D. Wang, and M. Tang, “Wearable Pressure Sensor Array With Layer-by-Layer Assembled MXene Nanosheets/Ag Nanoflowers for Motion Monitoring and Human-Machine Interfaces,” ACS Applied Materials & Interfaces 14 (2022): 48907-48916, https://doi.org/10.1021/acsami.2c14863.

[58]

J. Xu, L. Zhang, X. Lai, X. Zeng, and H. Li, “Wearable RGO/MXene Piezoresistive Pressure Sensors With Hierarchical Microspines for Detecting Human Motion,” ACS Applied Materials & Interfaces 14 (2022): 27262-27273, https://doi.org/10.1021/acsami.2c06574.

[59]

B. Park, J. Kim, D. Kang, et al., “Dramatically Enhanced Mechanosensitivity and Signal-to-Noise Ratio of Nanoscale Crack-Based Sensors: Effect of Crack Depth,” Advanced Materials 28 (2016): 8130-8137.

[60]

Y. Cao, Y. Guo, Z. Chen, et al., “Highly Sensitive Self-Powered Pressure and Strain Sensor Based on Crumpled MXene Film for Wireless Human Motion Detection,” Nano Energy 92 (2022): 106689.

[61]

X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao, and Y. Zhang, “Ultrasensitive and Stretchable Resistive Strain Sensors Designed for Wearable Electronics,” Materials Horizons 4 (2017): 502-510.

[62]

S. Wang, X. Du, Y. Luo, et al., “Hierarchical Design of Waterproof, Highly Sensitive, and Wearable Sensing Electronics Based on MXene-Reinforced Durable Cotton Fabrics,” Chemical Engineering Journal 408 (2021): 127363.

[63]

Y. Gao, C. Yan, H. Huang, et al., “Microchannel-Confined MXene Based Flexible Piezoresistive Multifunctional Micro-Force Sensor,” Advanced Functional Materials 30 (2020): 1909603, https://doi.org/10.1002/adfm.201909603.

[64]

J. Yang, L. Liu, D. Zhang, et al., “Dual-Stage Surficial Microstructure to Enhance the Sensitivity of MXene Pressure Sensors for Human Physiological Signal Acquisition,” ACS Applied Materials & Interfaces 16 (2024): 1096-1106, https://doi.org/10.1021/acsami.3c14780.

[65]

X. Zheng, S. Zhang, M. Zhou, et al., “MXene Functionalized, Highly Breathable and Sensitive Pressure Sensors With Multi-Layered Porous Structure,” Advanced Functional Materials 33 (2023): 2214880, https://doi.org/10.1002/adfm.202214880.

[66]

Z. Hui, P. Wang, J. Yang, J. Zhou, W. Huang, and G. Sun, “Stiffness Engineering of Ti3C2Tx MXene-Based Skin-Inspired Pressure Sensor With Broad-Range Ultrasensitivity, Low Detection Limit, and Gas Permeability,” Advanced Materials Interfaces 9 (2022): 2200261, https://doi.org/10.1002/admi.202200261.

[67]

H. Xia, L. Wang, H. Zhang, et al., “MXene/PPy@ PDMS Sponge-Based Flexible Pressure Sensor for Human Posture Recognition With the Assistance of a Convolutional Neural Network in Deep Learning,” Microsystems & Nanoengineering 9 (2023): 155.

[68]

N. Yang, X. Yin, H. Liu, et al., “Dual-Layer All-Textile Flexible Pressure Sensor Coupled by Silver Nanowires With Ti3C2-Mxene for Monitoring Athletic Motion During Sports and Transmitting Information,” ACS Applied Materials & Interfaces 15 (2023): 42992-43002, https://doi.org/10.1021/acsami.3c08874.

[69]

D. Yao, Z. Tang, Z. Liang, et al., “Adhesive, Multifunctional, and Wearable Electronics Based on Mxene-Coated Textile for Personal Heating Systems, Electromagnetic Interference Shielding, and Pressure Sensing,” Journal of Colloid and Interface Science 630 (2023): 23-33, https://doi.org/10.1016/j.jcis.2022.09.003.

[70]

S. Han, M. Zou, X. Pu, et al., “Smart Mxene-Based Bioelectronic Devices as Wearable Health Monitor for Sensing Human Physiological Signals,” VIEW 4 (2023): 20230005, https://doi.org/10.1002/VIW.20230005.

[71]

L. Li, X. Fu, S. Chen, et al., “Hydrophobic and Stable Mxene-Polymer Pressure Sensors for Wearable Electronics,” ACS Applied Materials & Interfaces 12 (2020): 15362-15369.

[72]

S. P. Sreenilayam, I. Ul Ahad, V. Nicolosi, and D. Brabazon, “MXene Materials Based Printed Flexible Devices for Healthcare, Biomedical and Energy Storage Applications,” Materials Today 43 (2021): 99-131.

[73]

S. Seyedin, S. Uzun, A. Levitt, et al., “MXene Composite and Coaxial Fibers With High Stretchability and Conductivity for Wearable Strain Sensing Textiles,” Advanced Functional Materials 30 (2020): 1910504.

[74]

S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, et al., “Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers,” Nature Materials 9 (2010): 859-864.

[75]

L. Yang, H. Wang, W. Yuan, et al., “Wearable Pressure Sensors Based on Mxene/Tissue Papers for Wireless Human Health Monitoring,” ACS Applied Materials & Interfaces 13 (2021): 60531-60543.

[76]

J. Yang, H. Li, J. Cheng, T. He, J. Li, and B. Wang, “Nanocellulose Intercalation to Boost the Performance of MXene Pressure Sensor for Human Interactive Monitoring,” Journal of Materials Science 56 (2021): 13859-13873.

[77]

M. Gu, X. Zhou, J. Shen, et al., “High-Sensitivity, Ultrawide Linear Range, Antibacterial Textile Pressure Sensor Based on Chitosan/MXene Hierarchical Architecture,” Iscience 27 (2024): 109481.

[78]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors 12 (2012): 9635-9665.

[79]

G. Korotcenkov, “Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?,” Materials Science and Engineering: B 139 (2007): 1-23.

[80]

A. M. Gas'kov and M. N. Rumyantseva, “Nature of Gas Sensitivity in Nanocrystalline Metal Oxides,” Russian Journal of Applied Chemistry 74 (2001): 440-444.

[81]

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent Advances of Superhard Nanocomposite Coatings: A Review,” Surface and Coatings Technology 167 (2003): 113-119.

[82]

Z. Yang, A. Liu, C. Wang, et al., “Improvement of Gas and Humidity Sensing Properties of Organ-Like MXene by Alkaline Treatment,” ACS Sensors 4 (2019): 1261-1269.

[83]

Y. Wang, J. Fu, H. Hu, and D. Ho, “D-Band Center Optimization of Ti3C2Tx MXene Nanosheets for Ultrahigh NO2 Gas Sensitivity at Room Temperature,” ACS Applied Materials & Interfaces 15 (2023): 40846-40854, https://doi.org/10.1021/acsami.3c08512.

[84]

S. Kim, H. Shin, J. Lee, et al., “Three-Dimensional MoS2/MXene Heterostructure Aerogel for Chemical Gas Sensors With Superior Sensitivity and Stability,” ACS Nano 17 (2023): 19387-19397, https://doi.org/10.1021/acsnano.3c07074.

[85]

A. Hermawan, B. Zhang, A. Taufik, et al., “CuO Nanoparticles/Ti3C2Tx MXene Hybrid Nanocomposites for Detection of Toluene Gas,” ACS Applied Nano Materials 3 (2020): 4755-4766, https://doi.org/10.1021/acsanm.0c00749.

[86]

B. Hammer, Y. Morikawa, and J. K. Nørskov, “CO Chemisorption at Metal Surfaces and Overlayers,” Physical Review Letters 76 (1996): 2141-2144.

[87]

F.-J. Meng, R.-F. Xin, and S.-X. Li, “Metal Oxide Heterostructures for Improving Gas Sensing Properties: A Review,” Materials 16 (2023): 263.

[88]

K. S. Pasupuleti, A. M. Thomas, D. Vidyasagar, et al., “ZnO@Ti3C2Tx MXene Hybrid Composite-Based Schottky-Barrier-Coated SAW Sensor for Effective Detection of Sub-ppb-Level NH3 at Room Temperature Under UV Illumination,” ACS Materials Letters 5 (2023): 2739-2746, https://doi.org/10.1021/acsmaterialslett.3c00698.

[89]

Y. Wang, J. Fu, J. Xu, H. Hu, and D. Ho, “Atomic Plasma Grafting: Precise Control of Functional Groups on Ti3C2Tx MXene for Room Temperature Gas Sensors,” ACS Applied Materials & Interfaces 15 (2023): 12232-12239.

[90]

Y. Seekaew, S. Kamlue, and C. Wongchoosuk, “Room-Temperature Ammonia Gas Sensor Based on Ti3C2Tx MXene/Graphene Oxide/CuO/ZnO Nanocomposite,” ACS Applied Nano Materials 6 (2023): 9008-9020, https://doi.org/10.1021/acsanm.3c01637.

[91]

S. M. Majhi, A. Ali, Y. E. Greish, H. F. El-Maghraby, and S. T. Mahmoud, “V2CTx MXene-Based Hybrid Sensor With High Selectivity and ppb-Level Detection for Acetone at Room Temperature,” Scientific Reports 13 (2023): 3114.

[92]

T. He, W. Liu, T. Lv, et al., “MXene/SnO2 Heterojunction Based Chemical Gas Sensors,” Sensors and Actuators B: Chemical 329 (2021): 129275.

[93]

H.-J. Koh, S. J. Kim, K. Maleski, et al., “Enhanced Selectivity of MXene Gas Sensors Through Metal Ion Intercalation: In Situ X-Ray Diffraction Study,” ACS Sensors 4 (2019): 1365-1372.

[94]

S. H. Lee, W. Eom, H. Shin, et al., “Room-Temperature, Highly Durable Ti3C2Tx Mxene/Graphene Hybrid Fibers for NH3 Gas Sensing,” ACS Applied Materials & Interfaces 12 (2020): 10434-10442.

[95]

B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, “2D Metal Carbides and Nitrides (MXenes) for Energy Storage,” Nature Reviews Materials 2 (2017): 16098.

[96]

Y. Chen, Y. Ge, W. Huang, et al., “Refractive Index Sensors Based on Ti3C2Tx MXene Fibers,” ACS Applied Nano Materials 3 (2020): 303-311.

[97]

F.-L. Gao, J. Liu, X. P. Li, et al., “Ti3C2Tx Mxene-Based Multifunctional Tactile Sensors for Precisely Detecting and Distinguishing Temperature and Pressure Stimuli,” ACS Nano 17 (2023): 16036-16047, https://doi.org/10.1021/acsnano.3c04650.

[98]

Z. Yang, S. Lv, Y. Zhang, et al., “Self-Assembly 3D Porous Crumpled MXene Spheres as Efficient Gas and Pressure Sensing Material for Transient All-MXene Sensors,” Nano-Micro Letters 14 (2022): 56.

[99]

K. Khorsand Kazemi, S. Hu, O. Niksan, et al., “Low-Profile Planar Antenna Sensor Based on Ti3C2Tx MXene Membrane for VOC and Humidity Monitoring,” Advanced Materials Interfaces 9 (2022): 2102411.

[100]

L. Wang, M. Tian, Y. Zhang, et al., “Helical Core-Sheath Elastic Yarn-Based Dual Strain/Humidity Sensors With MXene Sensing Layer,” Journal of Materials Science 55 (2020): 6187-6194.

[101]

W. Zhang, Y. Xi, E. Wang, et al., “Self-Powered Force Sensors for Multidimensional Tactile Sensing,” ACS Applied Materials & Interfaces 14 (2022): 20122-20131, https://doi.org/10.1021/acsami.2c03812.

[102]

S. Yuan, J. Bai, S. Li, et al., “A Multifunctional and Selective Ionic Flexible Sensor With High Environmental Suitability for Tactile Perception,” Advanced Functional Materials 34 (2024): 2309626, https://doi.org/10.1002/adfm.202309626.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/