Recent Progress in Tactile Sensing and Machine Learning for Texture Perception in Humanoid Robotics

Longteng Yu , Dabiao Liu

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 235 -248.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 235 -248. DOI: 10.1002/idm2.12233
REVIEW

Recent Progress in Tactile Sensing and Machine Learning for Texture Perception in Humanoid Robotics

Author information +
History +
PDF

Abstract

Humanoid robots have garnered substantial attention recently in both academia and industry. These robots are becoming increasingly sophisticated and intelligent, as seen in health care, education, customer service, logistics, security, space exploration, and so forth. Central to these technological advancements is tactile perception, a crucial modality through which humanoid robots exchange information with their external environment, thereby facilitating human-like behaviors such as object recognition and dexterous manipulation. Texture perception is particularly vital for these tasks, as the surface morphology of objects significantly influences recognition and manipulation abilities. This review addresses the recent progress in tactile sensing and machine learning for texture perception in humanoid robots. We first examine the design and working principles of tactile sensors employed in texture perception, differentiating between touch-based and sliding-based approaches. Subsequently, we delve into the machine learning algorithms implemented for texture perception using these tactile sensors. Finally, we discuss the challenges and future opportunities in this evolving field. This review aims to provide insights into the state-of-the-art developments and foster advancements in tactile sensing and machine learning for texture perception in humanoid robotics.

Keywords

contact mechanics / humanoid robots / machine intelligence / soft materials / tactile sensing

Cite this article

Download citation ▾
Longteng Yu, Dabiao Liu. Recent Progress in Tactile Sensing and Machine Learning for Texture Perception in Humanoid Robotics. Interdisciplinary Materials, 2025, 4(2): 235-248 DOI:10.1002/idm2.12233

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Darvish, L. Penco, J. Ramos, et al., “Teleoperation of Humanoid Robots: A Survey,” IEEE Transactions on Robotics 39, no. 3 (2023): 1706-1727, https://doi.org/10.1109/TRO.2023.3236952.

[2]

L. Vianello, L. Penco, W. Gomes, et al., “Human-Humanoid Interaction and Cooperation: A Review,” Current Robotics Reports 2, no. 4 (2021): 441-454, https://doi.org/10.1007/s43154-021-00068-z.

[3]

M. A. Diftler, F. A. Permenter, B. K. Hargrave, et al., “Robonaut 2—The First Humanoid Robot in Space,” in 2011 IEEE International Conference on Robotics and Automation, (Shanghai, China: IEEE, 2011), 2178-2183, https://doi.org/10.1109/ICRA.2011.5979830.

[4]

M. Alemi, A. Ghanbarzadeh, A. Meghdari, and L. J. Moghadam, “Clinical Application of a Humanoid Robot in Pediatric Cancer Interventions,” International Journal of Social Robotics 8, no. 5 (2016): 743-759, https://doi.org/10.1007/s12369-015-0294-y.

[5]

M. Yip, S. Salcudean, K. Goldberg, et al., “Artificial Intelligence Meets Medical Robotics,” Science 381, no. 6654 (2023): 141-146, https://doi.org/10.1126/science.adj3312.

[6]

S. Dafarra, U. Pattacini, G. Romualdi, et al., “iCub3 Avatar System: Enabling Remote Fully Immersive Embodiment of Humanoid Robots,” Science Robotics 9, no. 86 (2024): eadh3834, https://doi.org/10.1126/scirobotics.adh3834.

[7]

M. Mende, M. L. Scott, J. van Doorn, D. Grewal, and I. Shanks, “Service Robots Rising: How Humanoid Robots Influence Service Experiences and Elicit Compensatory Consumer Responses,” Journal of Marketing Research 56, no. 4 (2019): 535-556, https://doi.org/10.1177/0022243718822827.

[8]

H. Xue, Y. Li, W. Xu, H. Li, D. Zheng, and C. Lu, “UniFolding: Towards Sample-Efficient, Scalable, and Generalizable Robotic Garment Folding,” in Proceedings of the 7th Conference on Robot Learning, Proceedings of Machine Learning Research, eds. J. Tan, M. Toussaint, and K. Darvish (Atlanta, Georgia USA: PMLR, 2023), Vol. 229, 3321-3341, https://proceedings.mlr.press/v229/xue23b.html.

[9]

B. Burger, P. M. Maffettone, V. V. Gusev, et al., “A Mobile Robotic Chemist,” Nature 583, no. 7815 (2020): 237-241, https://doi.org/10.1038/s41586-020-2442-2.

[10]

J. Mahler, M. Matl, V. Satish, et al., “Learning Ambidextrous Robot Grasping Policies,” Science Robotics 4, no. 26 (2019): eaau4984, https://doi.org/10.1126/scirobotics.aau4984.

[11]

G. Ficht and S. Behnke, “Bipedal Humanoid Hardware Design: A Technology Review,” Current Robotics Reports 2, no. 2 (2021): 201-210, https://doi.org/10.1007/s43154-021-00050-9.

[12]

Z. Liu, X. Hu, R. Bo, et al., “A Three-Dimensionally Architected Electronic Skin Mimicking Human Mechanosensation,” Science 384, no. 6699 (2024): 987-994, https://doi.org/10.1126/science.adk5556.

[13]

B. Shih, D. Shah, J. Li, et al., “Electronic Skins and Machine Learning for Intelligent Soft Robots,” Science Robotics 5, no. 41 (2020): eaaz9239, https://doi.org/10.1126/scirobotics.aaz9239.

[14]

S. Gao, Y. Dai, and A. Nathan, “Tactile and Vision Perception for Intelligent Humanoids,” Advanced Intelligent Systems 4, no. 2 (2022): 2100074, https://doi.org/10.1002/aisy.202100074.

[15]

N. F. Lepora, “The Future Lies in a Pair of Tactile Hands,” Science Robotics 9, no. 91 (2024): eadq1501, https://doi.org/10.1126/scirobotics.adq1501.

[16]

J. H. Kim, “Multi-Axis Force-Torque Sensors for Measuring Zero-Moment Point in Humanoid Robots: A Review,” IEEE Sensors Journal 20, no. 3 (2020): 1126-1141, https://doi.org/10.1109/JSEN.2019.2947719.

[17]

C. Wang, L. Dong, D. Peng, and C. Pan, “Tactile Sensors for Advanced Intelligent Systems,” Advanced Intelligent Systems 1, no. 8 (2019): 1900090, https://doi.org/10.1002/aisy.201900090.

[18]

Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile Sensing in Dexterous Robot Hands—Review,” Robotics and Autonomous Systems 74, no. Part A (2015): 195-220, https://doi.org/10.1016/j.robot.2015.07.015.

[19]

S. Pyo, J. Lee, K. Bae, S. Sim, and J. Kim, “Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications,” Advanced Materials 33, no. 47 (2021): 2005902, https://doi.org/10.1002/adma.202005902.

[20]

L. Chen, S. Karilanova, S. Chaki, et al., “Spike Timing-Based Coding in Neuromimetic Tactile System Enables Dynamic Object Classification,” Science 384, no. 6696 (2024): 660-665, https://doi.org/10.1126/science.adf3708.

[21]

G. Li, S. Liu, L. Wang, and R. Zhu, “Skin-Inspired Quadruple Tactile Sensors Integrated on a Robot Hand Enable Object Recognition,” Science Robotics 5, no. 49 (2020): eabc8134, https://doi.org/10.1126/scirobotics.abc8134.

[22]

Q. Mao and R. Zhu, “Enhanced Robotic Tactile Perception With Spatiotemporal Sensing and Logical Reasoning for Robust Object Recognition,” Applied Physics Reviews 11, no. 2 (2024): 021424, https://doi.org/10.1063/5.0176343.

[23]

Z. Xia, Z. Deng, B. Fang, Y. Yang, and F. Sun, “A Review on Sensory Perception for Dexterous Robotic Manipulation,” International Journal of Advanced Robotic Systems 19, no. 2 (2022): 17298806221095974, https://doi.org/10.1177/17298806221095974.

[24]

Y. Yan, Z. Hu, Z. Yang, et al., “Soft Magnetic Skin for Super-Resolution Tactile Sensing With Force Self-Decoupling,” Science Robotics 6, no. 51 (2021): eabc8801, https://doi.org/10.1126/SCIROBOTICS.ABC8801.

[25]

T. Kim, J. Kim, I. You, J. Oh, S. P. Kim, and U. Jeong, “Dynamic Tactility By Position-Encoded Spike Spectrum,” Science Robotics 7, no. 63 (2022): eabl5761, https://doi.org/10.1126/scirobotics.abl5761.

[26]

J. Pan, Q. Wang, S. Gao, et al., “Knot-Inspired Optical Sensors for Slip Detection and Friction Measurement in Dexterous Robotic Manipulation,” Opto-Electronic Advances 6, no. 10 (2023): 230076, https://doi.org/10.29026/oea.2023.230076.

[27]

Y. Liu, S. Cui, J. Wei, et al., “Centrosymmetric- and Axisymmetric-Patterned Flexible Tactile Sensor for Roughness and Slip Intelligent Recognition,” Advanced Intelligent Systems 4, no. 1 (2022): 2100072, https://doi.org/10.1002/aisy.202100072.

[28]

M. Cai, Z. Jiao, S. Nie, C. Wang, J. Zou, and J. Song, “A Multifunctional Electronic Skin Based on Patterned Metal Films for Tactile Sensing With a Broad Linear Response Range,” Science Advances 7, no. 52 (2021): eabl8313, https://doi.org/10.1126/sciadv.abl8313.

[29]

Y. Qiu, S. Sun, X. Wang, et al., “Nondestructive Identification of Softness via Bioinspired Multisensory Electronic Skins Integrated on a Robotic Hand,” npj Flexible Electronics 6, no. 1 (2022): 45, https://doi.org/10.1038/s41528-022-00181-9.

[30]

H. Zhao, K. O'Brien, S. Li, and R. F. Shepherd, “Optoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides,” Science Robotics 1, no. 1 (2016): eaai7529, https://doi.org/10.1126/scirobotics.aai7529.

[31]

J. A. Fishel and G. E. Loeb, “Bayesian Exploration for Intelligent Identification of Textures,” Frontiers in Neurorobotics 6 (2012): 4, https://doi.org/10.3389/fnbot.2012.00004.

[32]

Y. Wang, J. Chen, and D. Mei, “Recognition of Surface Texture With Wearable Tactile Sensor Array: A Pilot Study,” Sensors and Actuators, A: Physical 307 (2020): 111972, https://doi.org/10.1016/j.sna.2020.111972.

[33]

M. Kaboli, K. Yao, D. Feng, and G. Cheng, “Tactile-Based Active Object Discrimination and Target Object Search in an Unknown Workspace,” Autonomous Robots 43, no. 1 (2019): 123-152, https://doi.org/10.1007/s10514-018-9707-8.

[34]

S. Gao, Q. Wang, and L. Yu, “Object Recognition Based on Hardness and Texture via Modified Force-Sensitive Fingertips of a Humanoid Hand,” IEEE Sensors Letters 7, no. 2 (2023): 6000704, https://doi.org/10.1109/LSENS.2023.3235376.

[35]

H. L. Costa, J. Schille, and A. Rosenkranz, “Tailored Surface Textures to Increase Friction—A Review,” Friction 10, no. 9 (2022): 1285-1304, https://doi.org/10.1007/s40544-021-0589-y.

[36]

D. Quick, “Tactile Robot Finger Outperforms Humans in Identifying Textures,” New Atlas, 2012, https://newatlas.com/biotac-tactile-robot-finger/23002/.

[37]

H. Yao, W. Yang, W. Cheng, et al., “Near-Hysteresis-Free Soft Tactile Electronic Skins for Wearables and Reliable Machine Learning,” Proceedings of the National Academy of Sciences 117, no. 41 (2020): 25352-25359, https://doi.org/10.1073/pnas.2010989117.

[38]

J. Ji, W. Zhao, Y. Wang, Q. Li, and G. Wang, “Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network,” ACS Nano 17, no. 20 (2023): 20153-20166, https://doi.org/10.1021/acsnano.3c05838.

[39]

A. K. Gupta, A. Nakagawa-Silva, N. F. Lepora, and N. V. Thakor, “Spatio-Temporal Encoding Improves Neuromorphic Tactile Texture Classification,” IEEE Sensors Journal 21, no. 17 (2021): 19038-19046, https://doi.org/10.1109/JSEN.2021.3087511.

[40]

H. Qiao, S. Sun, and P. Wu, “Non-Equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition,” Advanced Materials 35, no. 21 (2023): 2300593, https://doi.org/10.1002/adma.202300593.

[41]

N. Bai, Y. Xue, S. Chen, et al., “A Robotic Sensory System With High Spatiotemporal Resolution for Texture Recognition,” Nature Communications 14, no. 1 (2023): 7121, https://doi.org/10.1038/s41467-023-42722-4.

[42]

Y. Wang, J. Zhao, X. Zeng, et al., “All-Printed Finger-Inspired Tactile Sensor Array for Microscale Texture Detection and 3D Reconstruction,” Advanced33 Science 11, no. 26 (2024): 2400479, https://doi.org/10.1002/advs.202400479.

[43]

Y. Yan, Z. Hu, Y. Shen, and J. Pan, “Surface Texture Recognition By Deep Learning-Enhanced Tactile Sensing,” Advanced Intelligent Systems 4, no. 1 (2022): 2100076, https://doi.org/10.1002/aisy.202100076.

[44]

B. Ward-Cherrier, N. Pestell, and N. F. Lepora, “NeuroTac: A Neuromorphic Optical Tactile Sensor applied to Texture Recognition,” in 2020 IEEE International Conference on Robotics and Automation (ICRA) (Paris, France: IEEE, 2020), 2654-2660.

[45]

M. K. Johnson and E. H. Adelson, “Retrographic Sensing for the Measurement of Surface Texture and Shape,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition (Miami, FL, USA: IEEE, 2009), 1070-1077, https://doi.org/10.1109/CVPR.2009.5206534.

[46]

J. Weng, S. Xiao, Y. Yu, et al., “A Bio-Inspired Artificial Tactile Sensing System Based on Optical Microfiber and Enhanced by Neural Network,” Advanced Sensor Research 3, no. 7 (2024): 2300157, https://doi.org/10.1002/adsr.202300157.

[47]

L. Qin, L. Hao, X. Huang, et al., “Fingerprint-Inspired Biomimetic Tactile Sensors for the Surface Texture Recognition,” Sensors Actuators A Physical 371, no. March (2024): 115275, https://doi.org/10.1016/j.sna.2024.115275.

[48]

X. Qu, Z. Liu, P. Tan, et al., “Artificial Tactile Perception Smart Finger for Material Identification Based on Triboelectric Sensing,” Science Advances 8, no. 31 (2022): eabq2521, https://doi.org/10.1126/sciadv.abq2521.

[49]

T. V. Vorburger, H.-G. Rhee, T. B. Renegar, J.-F. Song, and A. Zheng, “Comparison of Optical and Stylus Methods for Measurement of Surface Texture,” International Journal of Advanced Manufacturing Technology 33, no. 1-2 (2007): 110-118, https://doi.org/10.1007/s00170-007-0953-8.

[50]

W. Zhai, Y. Cao, Z.-J. Zha, H. Xie, and F. Wu, “Deep Structure-Revealed Network for Texture Recognition,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Seattle, WA, USA: IEEE, 2020), 11007-11016, https://doi.org/10.1109/CVPR42600.2020.01102.

[51]

R. S. Johansson and J. R. Flanagan, “Coding and Use of Tactile Signals From the Fingertips in Object Manipulation Tasks,” Nature Reviews Neuroscience 10, no. 5 (2009): 345-359, https://doi.org/10.1038/nrn2621.

[52]

Y. Ma, H. Li, S. Chen, et al., “Skin-Like Electronics for Perception and Interaction: Materials, Structural Designs, and Applications,” Advanced Intelligent Systems 3, no. 4 (2021): 2000108, https://doi.org/10.1002/aisy.202000108.

[53]

J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, and S. Park, “Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics,” Advanced Materials 31, no. 48 (2019): 1904765, https://doi.org/10.1002/adma.201904765.

[54]

R. G. Ferreira, A. P. Silva, and J. Nunes-Pereira, “Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review,” ACS Sensors 9, no. 3 (2024): 1104-1133, https://doi.org/10.1021/acssensors.3c02555.

[55]

M. Zarei, G. Lee, S. G. Lee, and K. Cho, “Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces,” Advanced Materials 35, no. 4 (2023): 2203193, https://doi.org/10.1002/adma.202203193.

[56]

Z. Yuan and G. Shen, “Materials and Device Architecture Towards a Multimodal Electronic Skin,” Materials Today 64, no. April (2023): 165-179, https://doi.org/10.1016/j.mattod.2023.02.023.

[57]

S. Duan, Q. Shi, and J. Wu, “Multimodal Sensors and ML-Based Data Fusion for Advanced Robots,” Advanced Intelligent Systems 4, no. 12 (2022): 2200213, https://doi.org/10.1002/aisy.202200213.

[58]

W. Chen, H. Khamis, I. Birznieks, N. F. Lepora, and S. J. Redmond, “Tactile Sensors for Friction Estimation and Incipient Slip Detection—Toward Dexterous Robotic Manipulation: A Review,” IEEE Sensors Journal 18, no. 22 (2018): 9049-9064, https://doi.org/10.1109/JSEN.2018.2868340.

[59]

H. Yousef, M. Boukallel, and K. Althoefer, “Tactile Sensing for Dexterous In-Hand Manipulation in Robotics—A Review,” Sensors and Actuators, A: Physical 167, no. 2 (2011): 171-187, https://doi.org/10.1016/j.sna.2011.02.038.

[60]

P. Duhamel and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review and a State of the Art,” Signal Processing 19, no. 4 (1990): 259-299, https://doi.org/10.1016/0165-1684(90)90158-U.

[61]

A. Maćkiewicz and W. Ratajczak, “Principal Components Analysis (PCA),” Computers & Geosciences 19, no. 3 (1993): 303-342, https://doi.org/10.1016/0098-3004(93)90090-R.

[62]

S. Zhang, Y. Yang, F. Sun, et al., “A Compact Visuo-Tactile Robotic Skin for Micron-Level Tactile Perception,” IEEE Sensors Journal 24, no. 9 (2024): 15273-15282, https://doi.org/10.1109/JSEN.2024.3376574.

[63]

B. M. R. Lima, V. P. da Fonseca, T. E. A. deOliveira, Q. Zhu, and E. M. Petriu, “Dynamic Tactile Exploration for Texture Classification Using a Miniaturized Multi-Modal Tactile Sensor and Machine Learning,” in 2020 IEEE International Systems Conference (SysCon) (Montreal, QC, Canada: IEEE, 2020), 1-7, https://doi.org/10.1109/SysCon47679.2020.9275871.

[64]

R. Bhirangi, A. DeFranco, J. Adkins, et al., “All the Feels: A Dexterous Hand With Large-Area Tactile Sensing,” IEEE Robotics and Automation Letters 8, no. 12 (2023): 8311-8318, https://doi.org/10.1109/LRA.2023.3327619.

[65]

S. Sankar, D. Balamurugan, A. Brown, et al., “Texture Discrimination With a Soft Biomimetic Finger Using a Flexible Neuromorphic Tactile Sensor Array That Provides Sensory Feedback,” Soft Robotics 8, no. 5 (2021): 577-587, https://doi.org/10.1089/soro.2020.0016.

[66]

H. Yao, P. Li, W. Cheng, et al., “Environment-Resilient Graphene Vibrotactile Sensitive Sensors for Machine Intelligence,” ACS Materials Letters 2, no. 8 (2020): 986-992, https://doi.org/10.1021/acsmaterialslett.0c00160.

[67]

S. Zhang, Y. Sun, J. Shan, et al., “TIRgel: A Visuo-Tactile Sensor With Total Internal Reflection Mechanism for External Observation and Contact Detection,” IEEE Robotics and Automation Letters 8, no. 10 (2023): 6307-6314, https://doi.org/10.1109/LRA.2023.3306670.

[68]

Z. Li, L. Weng, Y. Zhang, K. Liu, and Y. Liu, “Texture Recognition Based on Magnetostrictive Tactile Sensor Array and Convolutional Neural Network,” AIP Advances 13, no. 10 (2023): 105302, https://doi.org/10.1063/5.0164170.

[69]

Z. Song, J. Yin, Z. Wang, et al., “A Flexible Triboelectric Tactile Sensor for Simultaneous Material and Texture Recognition,” Nano Energy 93 (2022): 106798, https://doi.org/10.1016/j.nanoen.2021.106798.

[70]

P. Xing, S. An, Y. Wu, et al., “A Triboelectric Tactile Sensor With Flower-Shaped Holes for Texture Recognition,” Nano Energy 116, no. June (2023): 108758, https://doi.org/10.1016/j.nanoen.2023.108758.

[71]

L. Wen, M. Nie, J. Fan, et al., “Tactile Recognition of Shape and Texture on the Same Substrate,” Advanced Intelligent Systems 5, no. 12 (2023): 2300337, https://doi.org/10.1002/aisy.202300337.

[72]

W. Navaraj and R. Dahiya, “Fingerprint-Enhanced Capacitive-Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic Tactile Stimuli,” Advanced Intelligent Systems 1, no. 7 (2019): 1900051, https://doi.org/10.1002/aisy.201900051.

[73]

T. Taunyazov, Y. Chua, R. Gao, H. Soh, and Y. Wu, “Fast Texture Classification Using Tactile Neural Coding and Spiking Neural Network,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Las Vegas, NV, USA: IEEE, 2020), 9890-9895, https://doi.org/10.1109/IROS45743.2020.9340693.

[74]

U. B. Rongala, A. Mazzoni, A. Spanne, H. Jörntell, and C. M. Oddo, “Cuneate Spiking Neural Network Learning to Classify Naturalistic Texture Stimuli Under Varying Sensing Conditions,” Neural Networks 123 (2020): 273-287, https://doi.org/10.1016/j.neunet.2019.11.020.

[75]

K. E. Friedl, A. R. Voelker, A. Peer, and C. Eliasmith, “Human-Inspired Neurorobotic System for Classifying Surface Textures By Touch,” IEEE Robotics and Automation Letters 1, no. 1 (2016): 516-523, https://doi.org/10.1109/LRA.2016.2517213.

[76]

H. Al Haj Ali, Y. Abbass, C. Gianoglio, A. Ibrahim, C. Oh, and M. Valle, “Neuromorphic Tactile Sensing System for Textural Features Classification,” IEEE Sensors Journal 24, no. 10 (2024): 17193-17207, https://doi.org/10.1109/JSEN.2024.3382369.

[77]

N. Wettels, J. A. Fishel, and G. E. Loeb, “Multimodal Tactile Sensor,” in The Human Hand as an Inspiration for Robot Hand Development, R. Balasubramanian and V. Santos (Springer: ham), Vol. 95, Springer Tracts in Advanced Robotics 95 (2014), 405-429, https://doi.org/10.1007/978-3-319-03017-3_19.

[78]

W. Yuan, S. Dong, and E. Adelson, “Gelsight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force,” Sensors 17, no. 12 (2017): 2762, https://doi.org/10.3390/s17122762.

[79]

V. Maheshwari and R. F. Saraf, “High-Resolution Thin-Film Device to Sense Texture by Touch,” Science 312, no. 5779 (2006): 1501-1504, https://doi.org/10.1126/science.1126216.

[80]

N. F. Lepora, “Soft Biomimetic Optical Tactile Sensing With the TacTip: A Review,” IEEE Sensors Journal 21, no. 19 (2021): 21131-21143, https://doi.org/10.1109/JSEN.2021.3100645.

[81]

A. Rodriguez, “The Unstable Queen: Uncertainty, Mechanics, and Tactile Feedback,” Science Robotics 6, no. 54 (2021): eabi4667, https://doi.org/10.1126/scirobotics.abi4667.

[82]

A. C. Abad and A. Ranasinghe, “Visuotactile Sensors With Emphasis on GelSight Sensor: A Review,” IEEE Sensors Journal 20, no. 14 (2020): 7628-7638, https://doi.org/10.1109/JSEN.2020.2979662.

[83]

S. Dong, W. Yuan, and E. H. Adelson, "Improved GelSight Tactile Sensor for Measuring Geometry and Slip,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), 137-144, https://doi.org/10.1109/IROS.2017.8202149.

[84]

K. Pang, X. Song, Z. Xu, et al., “Hydroplastic Foaming of Graphene Aerogels and Artificially Intelligent Tactile Sensors,” Science Advances 6, no. 46 (2020): eabd4045, https://doi.org/10.1126/sciadv.abd4045.

[85]

J. Shi, Y. Dai, Y. Cheng, et al., “Embedment of Sensing Elements for Robust, Highly Sensitive, and Cross-Talk-Free Iontronic Skins for Robotics Applications,” Science Advances 9, no. 9 (2023): eadf8831, https://doi.org/10.1126/sciadv.adf8831.

[86]

F. Liu, S. Deswal, A. Christou, Y. Sandamirskaya, M. Kaboli, and R. Dahiya, “Neuro-Inspired Electronic Skin for Robots,” Science Robotics 7, no. 67 (2022): eabl7344, https://doi.org/10.1126/scirobotics.abl7344.

[87]

J. C. Yeo, Z. Liu, Z.-Q. Zhang, P. Zhang, Z. Wang, and C. T. Lim, “Wearable Mechanotransduced Tactile Sensor for Haptic Perception,” Advanced Materials Technologies 2, no. 6 (2017): 1700006, https://doi.org/10.1002/admt.201700006.

[88]

Y. Tang, L. Yu, J. Pan, et al., “Optical Nanofiber Skins for Multifunctional Humanoid Tactility,” Advanced Intelligent Systems 5, no. 2 (2023): 2200203, https://doi.org/10.1002/aisy.202200203.

[89]

S. Chun, J. S. Kim, Y. Yoo, et al., “An Artificial Neural Tactile Sensing System,” Nature Electronics 4, no. 6 (2021): 429-438, https://doi.org/10.1038/s41928-021-00585-x.

[90]

S. Li, X. Chen, X. Li, et al., “Bioinspired Robot Skin With Mechanically Gated Electron Channels for Sliding Tactile Perception,” Science Advances 8, no. 48 (2022): eade0720, https://doi.org/10.1126/sciadv.ade0720.

[91]

Y. Cao, T. Li, Y. Gu, H. Luo, S. Wang, and T. Zhang, “Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture,” Small 14, no. 16 (2018): 1703902, https://doi.org/10.1002/smll.201703902.

[92]

G. Lee, J. H. Son, S. Lee, et al., “Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition,” Advanced Science 8, no. 9 (2021): 2002606, https://doi.org/10.1002/advs.202002606.

[93]

H. Wang, W. Wang, J. J. Kim, et al., “An Optical-Based Multipoint 3-Axis Pressure Sensor With a Flexible Thin-Film Form,” Science Advances 9, no. 36 (2023): eadi2445, https://doi.org/10.1126/sciadv.adi2445.

[94]

F. de Boissieu, C. Godin, B. Guilhamat, D. David, C. Serviere, and D. Baudois, “Tactile Texture Recognition With a 3-Axial Force MEMS Integrated Artificial Finger,” in Robotics: Science and Systems V, Vol. 5, eds. J. Trinkle, Y. Matsuoka and J. A. Castellanos (Science and Systems Foundation, 2009), 49-56, https://doi.org/10.15607/RSS.2009.V.007.

[95]

L. Yu, X. Wang, S. Gao, et al., “Optum: A Three-in-One Multimodal Tactile Sensor Based on Optical Fiber Knots for On-Orbit Service,” IEEE Sensors Letters 7, no. 11 (2023): 1-4, https://doi.org/10.1109/LSENS.2023.3324306.

[96]

Z. Hu, L. Lin, W. Lin, et al., “Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities,” Advanced Intelligent Systems 5, no. 7 (2023): 2200371, https://doi.org/10.1002/aisy.202200371.

[97]

G. Cao, J. Jiang, D. Bollegala, M. Li, and S. Luo, “Multimodal Zero-Shot Learning for Tactile Texture Recognition,” Robotics and Autonomous Systems 176, no. March (2024): 104688, https://doi.org/10.1016/j.robot.2024.104688.

[98]

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive Into Deep Learning (Cambridge University Press, 2023).

[99]

X. Zhao, Z. Zhang, L. Xu, et al., “Fingerprint-Inspired Electronic Skin Based on Triboelectric Nanogenerator for Fine Texture Recognition,” Nano Energy 85, no. February (2021): 106001, https://doi.org/10.1016/j.nanoen.2021.106001.

[100]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Las Vegas, NV, USA: IEEE, 2016), 770-778, https://doi.org/10.1109/CVPR.2016.90.

[101]

E. M. Izhikevich, “Simple Model of Spiking Neurons,” IEEE Transactions on Neural Networks 14, no. 6 (2003): 1569-1572, https://doi.org/10.1109/TNN.2003.820440.

[102]

A. Geier, R. Tucker, S. Somlor, H. Sawada, and S. Sugano, “End-to-End Tactile Feedback Loop: From Soft Sensor Skin Over Deep GRU-Autoencoders to Tactile Stimulation,” IEEE Robotics and Automation Letters 5, no. 4 (2020): 6467-6474, https://doi.org/10.1109/LRA.2020.3012951.

[103]

S. Chen, X. Liu, H. Luo, et al., “A State-of-the-Art Review of Asphalt Pavement Surface Texture and Its Measurement Techniques,” Journal of Road Engineering 2, no. 2 (2022): 156-180, https://doi.org/10.1016/j.jreng.2022.05.003.

[104]

J. Zhou, Q. Shao, C. Tang, et al., “Conformable and Compact Multiaxis Tactile Sensor for Human and Robotic Grasping via Anisotropic Waveguides,” Advanced Materials Technologies 7, no. 11 (2022): 2200595, https://doi.org/10.1002/admt.202200595.

[105]

H. Dai, C. Zhang, C. Pan, et al., “Split-Type Magnetic Soft Tactile Sensor With 3D Force Decoupling,” Advanced Materials 36, no. 11 (2024): 2310145, https://doi.org/10.1002/adma.202310145.

[106]

B.-G. Bok, J.-S. Jang, and M.-S. Kim, “A Highly Sensitive Multimodal Tactile Sensing Module With Planar Structure for Dexterous Manipulation of Robots,” Advanced Intelligent Systems 5, no. 6 (2023): 2200381, https://doi.org/10.1002/aisy.202200381.

[107]

Y. Gu, T. Zhang, J. Li, C. Zheng, M. Yang, and S. Li, “A New Force-Decoupling Triaxial Tactile Sensor Based on Elastic Microcones for Accurately Grasping Feedback,” Advanced Intelligent Systems 5, no. 3 (2023): 2200321, https://doi.org/10.1002/aisy.202200321.

[108]

D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense Tactile Force Estimation Using GelSlim and inverse FEM,” in 2019 International Conference on Robotics and Automation (ICRA), (Montreal, QC, Canada: IEEE, 2019), 5418-5424, https://doi.org/10.1109/ICRA.2019.8794113.

[109]

H. Sun, K. J. Kuchenbecker, and G. Martius, “A Soft Thumb-Sized Vision-Based Sensor With Accurate All-Round Force Perception,” Nature Machine Intelligence 4, no. 2 (2022): 135-145, https://doi.org/10.1038/s42256-021-00439-3.

[110]

F. Zhuang, Z. Qi, K. Duan, et al., “A Comprehensive Survey on Transfer Learning,” Proceedings of the IEEE 109, no. 1 (2021): 43-76, https://doi.org/10.1109/JPROC.2020.3004555.

[111]

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A Survey on Ensemble Learning,” Frontiers of Computer Science 14, no. 2 (2020): 241-258, https://doi.org/10.1007/s11704-019-8208-z.

[112]

V. L. Popov, Contact Mechanics and Friction, 2nd ed. (Heidelberg: Springer Berlin, 2017), https://doi.org/10.1007/978-3-662-53081-8.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/