Exploring the Active Lithium Loss in Anode-Free Lithium Metal Batteries: Mechanisms, Challenges, and Strategies

Xuzhi Duan , Jinran Sun , Liang Shi , Shanmu Dong , Guanglei Cui

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 217 -234.

PDF
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 217 -234. DOI: 10.1002/idm2.12232
REVIEW

Exploring the Active Lithium Loss in Anode-Free Lithium Metal Batteries: Mechanisms, Challenges, and Strategies

Author information +
History +
PDF

Abstract

Anode-free lithium metal batteries (AFLMBs), also known as lithium metal batteries (LMBs) with zero excess lithium, have garnered significant attention due to their substantially higher energy density compared to conventional lithium metal anodes, improved safety characteristics, and lower production costs. However, the current cycling stability of AFLMBs faces formidable challenges primarily caused by significant lithium loss associated with the deposition of lithium metal. Therefore, this review focuses on the crucial aspects of lithium metal nucleation and growth on the anode side. Respectively, aiming to provide an in-depth understanding of the deposition mechanisms, comprehensively summarize the corresponding scientific influencing factors, and analyze specific strategies for addressing these issues through the integration of relevant exemplary cases. Importantly, this review endeavors to offer a profound explication of the scientific essence and intricate mechanisms that underlie the diverse modification strategies. This review possesses the inherent capacity to greatly facilitate the progress and enlightenment of research in this field, offering a valuable resource for the researchers.

Keywords

active lithium loss / anode free lithium metal batteries / deposition mechanism

Cite this article

Download citation ▾
Xuzhi Duan, Jinran Sun, Liang Shi, Shanmu Dong, Guanglei Cui. Exploring the Active Lithium Loss in Anode-Free Lithium Metal Batteries: Mechanisms, Challenges, and Strategies. Interdisciplinary Materials, 2025, 4(2): 217-234 DOI:10.1002/idm2.12232

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Dunn, H. Kamath, and J. M. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” Science 334, no. 6058 (2011): 928-935.

[2]

S. M. Whittingham, “ChemInform Abstract: Ultimate Limits to Intercalation Reactions for Lithium Batteries,” Chemical Reviews 46, no. 23 (2015): 11414-11443.

[3]

R. Van Noorden, “The Rechargeable Revolution: A Better Battery,” Nature 507 (2014): 26-28.

[4]

L. Chen, X. Fan, X. Ji, J. Chen, S. Hou, and C. Wang, “High-Energy Li Metal Battery With Lithiated Host,” Joule 3, no. 3 (2019): 732-744.

[5]

J. Liu, Z. Bao, Y. Cui, et al., “Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries,” Nature Energy 4, no. 3 (2019): 180-186.

[6]

C. Heubner, S. Maletti, H. Auer, et al., “From Lithium-Metal Toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges,” Advanced Functional Materials 31, no. 51 (2021): 2106608.

[7]

A. J. Louli, A. Eldesoky, J. deGooyer, et al., “Different Positive Electrodes for Anode-Free Lithium Metal Cells,” Journal of the Electrochemical Society 169, no. 4 (2022): 040517.

[8]

F. He, W. Tang, X. Zhang, L. Deng, and J. Luo, “High Energy Density Solid State Lithium Metal Batteries Enabled by Sub-5 µm Solid Polymer Electrolytes,” Advanced Materials 33, no. 45 (2021): 2105329.

[9]

R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter, “Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries,” Nature Energy 3, no. 4 (2018): 267-278.

[10]

X. Zhang, L. Huang, B. Xie, et al., “Deciphering the Thermal Failure Mechanism of Anode-Free Lithium Metal Pouch Batteries,” Advanced Energy Materials 13, no. 8 (2023): 2203648.

[11]

W. Z. Huang, C. Z. Zhao, P. Wu, et al., “Anode-Free Solid-State Lithium Batteries: A Review,” Advanced Energy Materials 12, no. 26 (2022): 2201044.

[12]

P. Zou, Y. Sui, H. Zhan, et al., “Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode Under Multiphysical Fields,” Chemical Reviews 121, no. 10 (2021): 5986-6056.

[13]

A. Varzi, K. Thanner, R. Scipioni, et al., “Current Status and Future Perspectives of Lithium Metal Batteries,” Journal of Power Sources 480 (2020): 228803.

[14]

S. Liu, K. Jiao, and J. Yan, “Prospective Strategies for Extending Long-Term Cycling Performance of Anode-Free Lithium Metal Batteries,” Energy Storage Materials 54 (2023): 689-712.

[15]

B. Zhou, A. Bonakdarpour, I. Stoševski, B. Fang, and D. P. Wilkinson, “Modification of Cu Current Collectors for Lithium Metal Batteries—A Review,” Progress in Materials Science 130 (2022): 100996.

[16]

X. Zhang and C. Sun, “Recent Advances in Dendrite-Free Lithium Metal Anodes for High-Performance Batteries,” Physical Chemistry Chemical Physics 24, no. 34 (2022): 19996-20011.

[17]

C.-H. Jo, K.-S. Sohn, and S.-T. Myung, “Feasible Approaches for Anode-Free Lithium-Metal Batteries as Next Generation Energy Storage Systems,” Energy Storage Materials 57 (2023): 471-496.

[18]

Z. Xie, Z. Wu, X. An, et al., “Anode-Free Rechargeable Lithium Metal Batteries: Progress and Prospects,” Energy Storage Materials 32 (2020): 386-401.

[19]

A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, “Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal,” Nano Letters 17, no. 2 (2017): 1132-1139.

[20]

M. Volmer and Α Weber, “Keimbildung in übersättigten Gebilden,” Zeitschrift für physikalische Chemie 119, no. 1 (1926): 277-301.

[21]

R. Becker and W. Döring, “Kinetische behandlung der keimbildung in übersättigten dämpfen,” Annalen der physik 416, no. 8 (1935): 719-752.

[22]

J. Frenkel, “A General Theory of Heterophase Fluctuations and Pretransition Phenomena,” The Journal of Chemical Physics 7, no. 7 (1939): 538-547.

[23]

K.-J. Wu, E. C. M. Tse, C. Shang, and Z. Guo, “Nucleation and Growth in Solution Synthesis of Nanostructures—From Fundamentals to Advanced Applications,” Progress in Materials Science 123 (2022): 100821.

[24]

D. W. Oxtoby and D. Kashchiev, “A General Relation Between the Nucleation Work and the Size of the Nucleus in Multicomponent Nucleation,” The Journal of Chemical Physics 100, no. 10 (1994): 7665-7671.

[25]

D. R. Ely and R. E. García, “Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes,” Journal of the Electrochemical Society 160, no. 4 (2013): A662-A668.

[26]

C. Wang, M. Liu, M. Thijs, F. G. B. Ooms, S. Ganapathy, and M. Wagemaker, “High Dielectric Barium Titanate Porous Scaffold for Efficient Li Metal Cycling in Anode-Free Cells,” Nature Communications 12, no. 1 (2021): 6536.

[27]

H. Kwon, J.-H. Lee, Y. Roh, et al., “An Electron-Deficient Carbon Current Collector for Anode-Free Li-Metal Batteries,” Nature Communications 12, no. 1 (2021): 5537.

[28]

C. Monroe and J. Newman, “The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces,” Journal of the Electrochemical Society 152, no. 2 (2005): A396.

[29]

K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, and N. P. Balsara, “Detection of Subsurface Structures Underneath Dendrites Formed on Cycled Lithium Metal Electrodes,” Nature Materials 13, no. 1 (2014): 69-73.

[30]

P. Bai, J. Li, F. R. Brushett, and M. Z. Bazant, “Transition of Lithium Growth Mechanisms in Liquid Electrolytes,” Energy & Environmental Science 9, no. 10 (2016): 3221-3229.

[31]

W. Li, H. Yao, K. Yan, et al., “The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth,” Nature Communications 6, no. 1 (2015): 7436.

[32]

X. R. Chen, B. C. Zhao, C. Yan, and Q. Zhang, “Review on Li Deposition in Working Batteries: From Nucleation to Early Growth,” Advanced Materials 33, no. 8 (2021): 2004128.

[33]

L. Qian, Y. Zheng, T. Or, et al., “Advanced Material Engineering to Tailor Nucleation and Growth Towards Uniform Deposition for Anode-Less Lithium Metal Batteries,” Small 18, no. 50 (2022): 2205233.

[34]

M. Armand and J.-M. Tarascon, “Building Better Batteries,” Nature 451, no. 7179 (2008): 652-657.

[35]

P. Albertus, S. Babinec, S. Litzelman, and A. Newman, “Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries,” Nature Energy 3, no. 1 (2018): 16-21.

[36]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, “Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review,” Chemical Reviews 117, no. 15 (2017): 10403-10473.

[37]

H. Wan, Z. Wang, S. Liu, et al., “Critical Interphase Overpotential as a Lithium Dendrite-Suppression Criterion for All-Solid-State Lithium Battery Design,” Nature Energy 8, no. 5 (2023): 473-481.

[38]

H. Cheng, C. Gao, N. Cai, and M. Wang, “Ag Coated 3D-Cu Foam as a Lithiophilic Current Collector for Enabling Li2S-Based Anode-Free Batteries,” Chemical Communications 57, no. 30 (2021): 3708-3711.

[39]

X. Ke, Y. Cheng, J. Liu, et al., “Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage,” ACS Applied Materials & Interfaces 10, no. 16 (2018): 13552-13561.

[40]

H. Liu, X. Yue, X. Xing, et al., “A Scalable 3D Lithium Metal Anode,” Energy Storage Materials 16 (2019): 505-511.

[41]

L. Luo, J. Li, H. Yaghoobnejad Asl, and A. Manthiram, “A 3D Lithiophilic Mo2N-Modified Carbon Nanofiber Architecture for Dendrite-Free Lithium-Metal Anodes in a Full Cell,” Advanced Materials 31, no. 48 (2019): 1904537.

[42]

S. Zhang, M. Wang, Z. Zhou, and Y. Tang, “Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated With Patterned Anode for High-Performance Dual-Ion Batteries,” Advanced Functional Materials 27, no. 39 (2017): 1703035.

[43]

R. Xu, J. F. Ding, X. X. Ma, C. Yan, Y. X. Yao, and J. Q. Huang, “Designing and Demystifying the Lithium Metal Interface Toward Highly Reversible Batteries,” Advanced Materials 33, no. 52 (2021): 2105962.

[44]

H. Zhao, D. Lei, Y. B. He, et al., “Compact 3D Copper With Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite-Free Lithium Metal Anode Current Collector,” Advanced Energy Materials 8, no. 19 (2018): 1800266.

[45]

Q. Li, S. Zhu, and Y. Lu, “3D porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries,” Advanced Functional Materials 27, no. 18 (2017): 1606422.

[46]

A. A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, “Polyethylene Oxide Film Coating Enhances Lithium Cycling Efficiency of an Anode-Free Lithium-Metal Battery,” Nanoscale 10, no. 13 (2018): 6125-6138.

[47]

D. Zhang, A. Dai, B. Fan, et al., “Three-Dimensional Ordered Macro/Mesoporous Cu/Zn as a Lithiophilic Current Collector for Dendrite-Free Lithium Metal Anode,” ACS Applied Materials & Interfaces 12, no. 28 (2020): 31542-31551.

[48]

N. A. Sahalie, Z. T. Wondimkun, W.-N. Su, et al., “Multifunctional Properties of Al2O3/Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery,” ACS Applied Energy Materials 3, no. 8 (2020): 7666-7679.

[49]

G. Zheng, S. W. Lee, Z. Liang, et al., “Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes,” Nature Nanotechnology 9, no. 8 (2014): 618-623.

[50]

Y. Li, Y. Li, A. Pei, et al., “Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy,” Science 358, no. 6362 (2017): 506-510.

[51]

J. Liu, N. Pei, X. Yang, et al., “Recent Advances in Lithiophilic Materials: Material Design and Prospects for Lithium Metal Anode Application,” Energy Materials 3, no. 3 (2023): 300024.

[52]

F. Ding, W. Xu, G. L. Graff, et al., “Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism,” Journal of the American Chemical Society 135, no. 11 (2013): 4450-4456.

[53]

V. Pande and V. Viswanathan, “Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries,” ACS Energy Letters 4, no. 12 (2019): 2952-2959.

[54]

K. Yan, Z. Lu, H.-W. Lee, et al., “Selective Deposition and Stable Encapsulation of Lithium Through Heterogeneous Seeded Growth,” Nature Energy 1, no. 3 (2016): 16010.

[55]

X. Wang, Y. He, S. Tu, et al., “Li Plating on Alloy With Superior Electro-Mechanical Stability for High Energy Density Anode-Free Batteries,” Energy Storage Materials 49 (2022): 135-143.

[56]

Z. T. Wondimkun, W. A. Tegegne, J. Shi-Kai, et al., “Highly-Lithiophilic Ag@PDA-GO Film to Suppress Dendrite Formation on Cu Substrate in Anode-Free Lithium Metal Batteries,” Energy Storage Materials 35 (2021): 334-344.

[57]

Y.-G. Lee, S. Fujiki, C. Jung, et al., “High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver-Carbon Composite Anodes,” Nature Energy 5, no. 4 (2020): 299-308.

[58]

D. T. Boyle, Y. Li, A. Pei, et al., “Resolving Current-Dependent Regimes of Electroplating Mechanisms for Fast Charging Lithium Metal Anodes,” Nano Letters 22, no. 20 (2022): 8224-8232.

[59]

S. S. Zhang, X. Fan, and C. Wang, “A Tin-Plated Copper Substrate for Efficient Cycling of Lithium Metal in an Anode-Free Rechargeable Lithium Battery,” Electrochimica Acta 258 (2017): 1201-1207.

[60]

S. Liu, X. Zhang, R. Li, L. Gao, and J. Luo, “Dendrite-Free Li Metal Anode by Lowering Deposition Interface Energy With Cu99Zn Alloy Coating,” Energy Storage Materials 14 (2018): 143-148.

[61]

L. Lin, K. Qin, Y. Hu, et al., “A Better Choice to Achieve High Volumetric Energy Density: Anode-Free Lithium-Metal Batteries,” Advanced Materials 34, no. 23 (2022): e2110323.

[62]

P. Gao, H. Wu, X. Zhang, et al., “Optimization of Magnesium-Doped Lithium Metal Anode for High Performance Lithium Metal Batteries Through Modeling and Experiment,” Angewandte Chemie International Edition 60, no. 30 (2021): 16506-16513.

[63]

P. Du, C. Yuan, X. Cui, et al., “A Dendrite-Suppressed and Utilization-Improved Metallic Li Anode Enabled by Lithiophilic Nano-Pb Decoration on Carbon Cloth,” Journal of Materials Chemistry A 10, no. 15 (2022): 8424-8431.

[64]

J. B. Park, C. Choi, S. Yu, K. Y. Chung, and D. W. Kim, “Porous Lithiophilic Li-Si Alloy-Type Interfacial Framework via Self-Discharge Mechanism for Stable Lithium Metal Anode With Superior Rate,” Advanced Energy Materials 11, no. 37 (2021): 2101544.

[65]

S. Cho, D. Y. Kim, J. I. Lee, et al., “Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries,” Advanced Functional Materials 32, no. 47 (2022): 2208629.

[66]

P. Qing, Z. Wu, A. Wang, et al., “Highly Reversible Lithium Metal Anode Enabled by 3D Lithiophilic-Lithiophobic Dual-Skeletons,” Advanced Materials 35, no. 15 (2023): 2211203.

[67]

J. Teng, X. Tang, H. Li, Q. Wu, D. Zhao, and J. Li, “Al-Li Alloys as Bifunctional Sacrificial Lithium Sources for Prelithiation of High-Energy-Density Li-Ion Batteries,” Journal of Power Sources 540 (2022): 231642.

[68]

J. Jiang, Y. Ou, S. Lu, et al., “In-situ Construction of Li-Mg/LiF Conductive Layer to Achieve an Intimate Lithium-Garnet Interface for All-Solid-State Li Metal Battery,” Energy Storage Materials 50 (2022): 810-818.

[69]

J. Peng, Y. Liu, Y. Pan, et al., “Fast Lithium Ion Conductivity in Layered (Li-Ag) CrS2,” Journal of the American Chemical Society 142, no. 43 (2020): 18645-18651.

[70]

D. Spencer-Jolly, V. Agarwal, C. Doerrer, et al., “Structural Changes in the Silver-Carbon Composite Anode Interlayer of Solid-State Batteries,” Joule 7, no. 3 (2023): 503-514.

[71]

W. Guan, T. Wang, Y. Liu, et al., “Impact of Morphological Dimensions in Carbon-Based Interlayers on Lithium Metal Anode Stabilization,” Advanced Energy Materials 13, no. 45 (2023): 2302565.

[72]

R. V. Salvatierra, W. Chen, and J. M. Tour, “What Can be Expected from “Anode-Free” Lithium Metal Batteries?,” Advanced Energy and Sustainability Research 2, no. 5 (2021): 2000110.

[73]

Y. Tian, Y. An, C. Wei, et al., “Recently Advances and Perspectives of Anode-Free Rechargeable Batteries,” Nano Energy 78 (2020): 105344.

[74]

Z. Tong, B. Bazri, S.-F. Hu, and R.-S. Liu, “Interfacial Chemistry in Anode-Free Batteries: Challenges and Strategies,” Journal of Materials Chemistry A 9, no. 12 (2021): 7396-7406.

[75]

W. Dachraoui, R. Pauer, C. Battaglia, and R. Erni, “Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries,” ACS Nano 17, no. 20 (2023): 20434-20444.

[76]

J. B. Goodenough and Y. Kim, “Challenges for Rechargeable Li Batteries,” Chemistry of Materials 22, no. 3 (2010): 587-603.

[77]

H. Wan, J. Xu, and C. Wang, “Designing Electrolytes and Interphases for High-Energy Lithium Batteries,” Nature Reviews Chemistry 8, no. 1 (2024): 30-44.

[78]

J. Sun, S. Zhang, J. Li, et al., “Robust Transport: An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries,” Advanced Materials 35, no. 20 (2023): 2209404.

[79]

H. Wang, T. Hou, H. Cheng, B. Jiang, H. Xu, and Y. Huang, “Bifunctional LiI Additive for Poly (Ethylene Oxide) Electrolyte With High Ionic Conductivity and Stable Interfacial Chemistry,” Journal of Energy Chemistry 71 (2022): 218-224.

[80]

C. Hou, J. Han, P. Liu, et al., “Operando Observations of SEI Film Evolution by Mass-Sensitive Scanning Transmission Electron Microscopy,” Advanced Energy Materials 9, no. 45 (2019): 1902675.

[81]

J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan, and J.-Q. Huang, “A Review on the Failure and Regulation of Solid Electrolyte Interphase in Lithium Batteries,” Journal of Energy Chemistry 59 (2021): 306-319.

[82]

J. Tan, J. Matz, P. Dong, J. Shen, and M. Ye, “A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase,” Advanced Energy Materials 11, no. 16 (2021): 2100046.

[83]

G. Liu and W. Lu, “A Model of Concurrent Lithium Dendrite Growth, SEI Growth, SEI Penetration and Regrowth,” Journal of the Electrochemical Society 164, no. 9 (2017): A1826-A1833.

[84]

B. Han, Y. Zou, G. Xu, et al., “Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy,” Energy & Environmental Science 14, no. 9 (2021): 4882-4889.

[85]

B. Wu, C. Chen, L. H. J. Raijmakers, et al., “Li-Growth and SEI Engineering for Anode-Free Li-Metal Rechargeable Batteries: A Review of Current Advances,” Energy Storage Materials 57 (2023): 508-539.

[86]

E. Peled and S. Menkin, “Review—SEI: Past, Present and Future,” Journal of the Electrochemical Society 164, no. 7 (2017): A1703-A1719.

[87]

B. Li, Y. Chao, M. Li, et al., “A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries,” Electrochemical Energy Reviews 6, no. 1 (2023): 7.

[88]

H. Wu, H. Jia, C. Wang, J. G. Zhang, and W. Xu, “Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes,” Advanced Energy Materials 11, no. 5 (2021): 2003092.

[89]

H. Shin, J. Park, S. Han, A. M. Sastry, and W. Lu, “Component-/Structure-Dependent Elasticity of Solid Electrolyte Interphase Layer in Li-ion Batteries: Experimental and Computational Studies,” Journal of Power Sources 277 (2015): 169-179.

[90]

T. Hou, G. Yang, N. N. Rajput, et al., “The Influence of FEC on the Solvation Structure and Reduction Reaction of LiPF6/EC Electrolytes and its Implication for Solid Electrolyte Interphase Formation,” Nano Energy 64 (2019): 103881.

[91]

T. M. Hagos, T. T. Hagos, H. K. Bezabh, et al., “Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery,” ACS Applied Energy Materials 3, no. 11 (2020): 10722-10733.

[92]

T. T. Hagos, B. Thirumalraj, C.-J. Huang, et al., “Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries,” ACS Applied Materials & Interfaces 11, no. 10 (2019): 9955-9963.

[93]

T. M. Hagos, H. K. Bezabh, H. G. Redda, et al., “Exploring the Performance of Carbonate and Ether-based Electrolytes for Anode-Free Lithium Metal Batteries Operating Under Various Conditions,” Journal of Power Sources 512 (2021): 230388.

[94]

B. A. Jote, T. T. Beyene, N. A. Sahalie, et al., “Effect of Diethyl Carbonate Solvent With Fluorinated Solvents as Electrolyte System for Anode Free Battery,” Journal of Power Sources 461 (2020): 228102.

[95]

T. T. Beyene, B. A. Jote, Z. T. Wondimkun, et al., “Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries,” ACS Applied Materials & Interfaces 11, no. 35 (2019): 31962-31971.

[96]

H. Choi, Y. Bae, S.-M. Lee, Y.-C. Ha, H.-C. Shin, and B. G. Kim, “A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries,” Journal of Electrochemical Science and Technology 13, no. 1 (2022): 78-89.

[97]

R. Weber, M. Genovese, A. J. Louli, et al., “Long Cycle Life and Dendrite-Free Lithium Morphology In Anode-Free Lithium Pouch Cells Enabled by a Dual-salt Liquid Electrolyte,” Nature Energy 4, no. 8 (2019): 683-689.

[98]

A. J. Louli, A. Eldesoky, R. Weber, et al., “Diagnosing and Correcting Anode-Free Cell Failure via Electrolyte and Morphological Analysis,” Nature Energy 5, no. 9 (2020): 693-702.

[99]

B. T. Hotasi, T. M. Hagos, C. J. Huang, et al., “Developing Ester-Based Fluorinated Electrolyte With LiPO2F2 as an Additive for High-Rate and Thermally Robust Anode-Free Lithium Metal Battery,” Journal of Power Sources 548 (2022): 232047.

[100]

C. Chen, Q. Liang, G. Wang, D. Liu, and X. Xiong, “Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes,” Advanced Functional Materials 32, no. 4 (2022): 2107249.

[101]

Y. Liu, Y.-K. Tzeng, D. Lin, et al., “An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes,” Joule 2, no. 8 (2018): 1595-1609.

[102]

C. Jiang, J. Yan, D. Wang, et al., “Significant Strain Dissipation Via Stiff-Tough Solid Electrolyte Interphase Design for Highly Stable Alloying Anodes,” Angewandte Chemie International Edition 62, no. 51 (2023): e202314509.

[103]

M. Gu, A. M. Rao, J. Zhou, and B. Lu, “In Situ Formed Uniform and Elastic SEI for High-Performance Batteries,” Energy & Environmental Science 16, no. 3 (2023): 1166-1175.

[104]

B. Jagger and M. Pasta, “Solid Electrolyte Interphases in Lithium Metal Batteries,” Joule 7, no. 10 (2023): 2228-2244.

[105]

W. Bao, Y. Zhang, L. Cao, et al., “An H2O-Initiated Crosslinking Strategy for Ultrafine-Nanoclusters-Reinforced High-Toughness Polymer-in-Plasticizer Solid Electrolyte,” Advanced Materials 35, no. 41 (2023): 2304712.

[106]

K. Hashimoto, T. Shiwaku, H. Aoki, H. Yokoyama, K. Mayumi, and K. Ito, “Strain-Induced Crystallization and Phase Separation Used for Fabricating a Tough and Stiff Slide-Ring Solid Polymer Electrolyte,” Science Advances 9, no. 47 (2023): eadi8505.

[107]

Y. Liu, X. Xu, O. O. Kapitanova, et al., “Electro-Chemo-Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes,” Advanced Energy Materials 12, no. 9 (2022): 2103589.

[108]

Z. T. Wondimkun, T. T. Beyene, M. A. Weret, et al., “Binder-Free Ultra-Thin Graphene Oxide as an Artificial Solid Electrolyte Interphase for Anode-Free Rechargeable Lithium Metal Batteries,” Journal of Power Sources 450 (2020): 227589.

[109]

Y. Nikodimos, W. N. Su, K. N. Shitaw, et al., “Multifunctional Electrospun PVDF-HFP Gel Polymer Electrolyte Membrane Suppresses Dendrite Growth in Anode-Free Li Metal Battery,” Energy Storage Materials 61 (2023): 102861.

[110]

Y. Cheng, Z. Wang, J. Chen, et al., “Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm−2 and 20 mAh cm−2,” Angewandte Chemie 135, no. 30 (2023): e202305723.

[111]

M. S. Kim, Z. Zhang, J. Wang, et al., “Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries,” ACS Nano 17, no. 3 (2023): 3168-3180.

[112]

J. Fu, X. Ji, J. Chen, et al., “Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries,” Angewandte Chemie 132, no. 49 (2020): 22378-22385.

[113]

Z. Chen, W. Chen, H. Wang, et al., “Lithiophilic Anchor Points Enabling Endogenous Symbiotic Li3N Interface for Homogeneous and Stable Lithium Electrodeposition,” Nano Energy 93 (2022): 106836.

[114]

R. Rodriguez, R. A. Edison, R. M. Stephens, H.-H. Sun, A. Heller, and C. B. Mullins, “Separator-Free and Concentrated LiNO3 Electrolyte Cells Enable Uniform Lithium Electrodeposition,” Journal of Materials Chemistry A 8, no. 7 (2020): 3999-4006.

[115]

K. Qin, J. V. Nguyen, Z. Yang, and C. Luo, “Anion Modification for Stable Solid Electrolyte Interphase in Anode-Free Lithium Metal Batteries,” Materials Today Energy 31 (2023): 101199.

[116]

J. Zhang, H. Zhang, L. Deng, et al., “An Additive-Enabled Ether-Based Electrolyte to Realize Stable Cycling of High-Voltage Anode-Free Lithium Metal Batteries,” Energy Storage Materials 54 (2023): 450-460.

[117]

N. A. Sahalie, A. A. Assegie, W.-N. Su, et al., “Effect of Bifunctional Additive Potassium Nitrate on Performance of Anode Free Lithium Metal Battery in Carbonate Electrolyte,” Journal of Power Sources 437 (2019): 226912.

[118]

Y. Huang, C. Wang, H. Lv, et al, “Bifunctional Interphase Promotes Li+ De-Solvation and Transportation Enabling Fast-Charging Graphite Anode at Low Temperature,” Advanced Materials 36, no. 13 (2023): 2308675.

[119]

S. Tu, B. Zhang, Y. Zhang, et al., “Fast-Charging Capability of Graphite-Based Lithium-Ion Batteries Enabled by Li3P-Based Crystalline Solid-Electrolyte Interphase,” Nature Energy 8, no. 12 (2023): 1365-1374.

[120]

J.-X. Chen, G.-Q. Zhang, X.-Y. Qin, et al., “Lithium-Induced Graphene Layer Containing Li3P Alloy Phase to Achieve Ultra-Stable Electrode Interface for Lithium Metal Anode,” Rare Metals 43, no. 2 (2024): 562-574.

[121]

M. Bai, K. Xie, K. Yuan, et al., “A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers,” Advanced Materials 30, no. 29 (2018): 1801213.

[122]

E. Kazyak, K. N. Wood, and N. P. Dasgupta, “Improved Cycle Life and Stability of Lithium Metal Anodes Through Ultrathin Atomic Layer Deposition Surface Treatments,” Chemistry of Materials 27, no. 18 (2015): 6457-6462.

[123]

C.-A. Lo, C.-C. Chang, Y.-W. Tsai, et al., “Regulated Li Electrodeposition Behavior Through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries,” ACS Applied Energy Materials 4, no. 5 (2021): 5132-5142.

[124]

C. Monroe and J. Newman, “The Effect of Interfacial Deformation On Electrodeposition Kinetics,” Journal of the Electrochemical Society 151, no. 6 (2004): A880.

[125]

J. Pan, Y.-T. Cheng, and Y. Qi, “General Method to Predict Voltage-dependent Ionic Conduction in a Solid Electrolyte Coating on Electrodes,” Physical Review B 91, no. 13 (2015): 134116.

[126]

A. A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, and B.-J. Hwang, “Multilayer-Graphene-Stabilized Lithium Deposition for Anode-Free Lithium-Metal Batteries,” Nanoscale 11, no. 6 (2019): 2710-2720.

[127]

L. Lin, W. Lu, F. Zhao, et al., “20 µm Li Metal Modified With Phosphate Rich Polymer-Inorganic Interphase Applied in Commercial Carbonate Electrolyte,” Journal of Energy Chemistry 76 (2023): 233-238.

[128]

J. Zeng, Q. Liu, D. Jia, et al., “A Polymer Brush-Based Robust and Flexible Single-Ion Conducting Artificial SEI Film For Fast Charging Lithium Metal Batteries,” Energy Storage Materials 41 (2021): 697-702.

[129]

O. B. Chae and B. L. Lucht, “Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes,” Advanced Energy Materials 13, no. 14 (2023): 2203791.

[130]

K. Song and W. Chen, “An Effective Solid-Electrolyte Interphase for Stable Solid-State Batteries,” Chem 7, no. 12 (2021): 3195-3197.

[131]

J. Yao, G. Zhu, K. Dong, et al., “Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries Via External Physical Fields,” Advanced Energy and Sustainability Research 5, no. 1 (2024): 2300165.

[132]

Z. Ning, G. Li, D. L. R. Melvin, et al., “Dendrite initiation and Propagation in Lithium Metal Solid-State Batteries,” Nature 618, no. 7964 (2023): 287-293.

[133]

Z. Ning, D. S. Jolly, G. Li, et al., “Visualizing Plating-Induced Cracking in Lithium-Anode Solid-Electrolyte Cells,” Nature Materials 20, no. 8 (2021): 1121-1129.

[134]

Y. Zhai, W. Hou, M. Tao, et al., “Enabling High-Voltage “Superconcentrated Lonogel-in-Ceramic” Hybrid Electrolyte With Ultrahigh Ionic Conductivity and Single Li+-Ion Transference Number,” Advanced Materials 34, no. 39 (2022): 2205560.

[135]

T. A. Zegeye, W.-N. Su, F. W. Fenta, T. S. Zeleke, S.-K. Jiang, and B. J. Hwang, “Ultrathin Li6.75La3Zr1.75Ta0.25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-Free Lithium Metal Batteries,” ACS Applied Energy Materials 3, no. 12 (2020): 11713-11723.

[136]

N. T. Temesgen, H. K. Bezabh, M. A. Weret, et al., “Solvent-Free Design of Argyrodite Sulfide Composite Solid Electrolyte With Superb Interface and Moisture Stability in Anode-Free Lithium Metal Batteries,” Journal of Power Sources 556 (2023): 232462.

[137]

Y. Gong, C. Wang, M. Xin, et al., “Ultra-Thin and High-Voltage-Stable Bi-Phasic Solid Polymer Electrolytes for High-Energy-Density Li Metal Batteries,” Nano Energy 119 (2024): 109054.

[138]

S. Nanda, A. Gupta, and A. Manthiram, “Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries,” Advanced Energy Materials 11, no. 2 (2020): 2000804.

[139]

C. Zhou, A. J. Samson, M. A. Garakani, and V. Thangadurai, “Communication—Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance,” Journal of the Electrochemical Society 168, no. 6 (2021): 060532.

[140]

A. J. Louli, M. Coon, M. Genovese, J. deGooyer, A. Eldesoky, and J. R. Dahn, “Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells,” Journal of the Electrochemical Society 168, no. 2 (2021): 020515.

[141]

L. Su, H. Charalambous, Z. Cui, and A. Manthiram, “High-Efficiency, Anode-free Lithium-Metal Batteries With A Close-Packed Homogeneous Lithium Morphology,” Energy & Environmental Science 15, no. 2 (2022): 843-854.

[142]

H.-S. Lim, D. T. Nguyen, J. A. Lochala, X. Cao, and J.-G. Zhang, “Improving Cycling Performance of Anode-Free Lithium Batteries by Pressure and Voltage Control,” ACS Energy Letters 9, no. 1 (2023): 126-135.

[143]

D. Liu, B. Wu, Y. Xu, et al., “Controlled Large-Area Lithium Deposition to Reduce Swelling of High-Energy Lithium Metal Pouch Cells in Liquid Electrolytes,” Nature Energy 9 (2024): 559-569.

[144]

X. Hu, Z. Zhang, X. Zhang, et al., “External-Pressure-Electrochemistry Coupling in Solid-State Lithium Metal Batteries,” Nature Reviews Materials 9 (2024): 305-320.

[145]

E. Kazyak, M. J. Wang, K. Lee, et al., “Understanding the Electro-Chemo-Mechanics of Li Plating in Anode-Free Solid-State Batteries With Operando 3D Microscopy,” Matter 5, no. 11 (2022): 3912-3934.

[146]

A. J. Louli, M. Coon, M. Genovese, J. Degooyer, A. Eldesoky, and J. R. Dahn, “Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells,” Journal of the Electrochemical Society 168, no. 2 (2021): 020515.

[147]

X. Lin, Y. Shen, Y. Yu, and Y. Huang, “In Situ NMR Verification for Stacking Pressure-Induced Lithium Deposition and Dead Lithium in Anode-Free Lithium Metal Batteries,” Advanced Energy Materials 14, no. 14 (2024): 2303918.

[148]

W. Liu, Y. Luo, Y. Hu, et al, “Interrelation Between External Pressure, SEI Structure, and Electrodeposit Morphology in an Anode-Free Lithium Metal Battery,” Advanced Energy Materials 14, no. 5 (2024): 2302261.

[149]

A. J. Louli, M. Genovese, R. Weber, S. G. Hames, E. R. Logan, and J. R. Dahn, “Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells,” Journal of the Electrochemical Society 166, no. 8 (2019): A1291-A1299.

[150]

M. Genovese, A. J. Louli, R. Weber, C. Martin, T. Taskovic, and J. R. Dahn, “Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries,” Journal of the Electrochemical Society 166, no. 14 (2019): A3342-A3347.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/