A Stretchable, Attachable, and Transparent Polyionic Ecological Skin for Robust Self-Powered Interactive Sensing
Zhiqing Bai , Yunlong Xu , Yuan Fan , Qichong Zhang
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 321 -332.
A Stretchable, Attachable, and Transparent Polyionic Ecological Skin for Robust Self-Powered Interactive Sensing
Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human-machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human-cyber-physical intelligence integration.
interactive sensing / multiple feature integration / polyionic eco-skins / triboelectricity / user-friendliness
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |