Optimizing Hydrazine Activation on Dual-Site Co-Zn Catalysts for Direct Hydrazine-Hydrogen Peroxide Fuel Cells
Qian Liu , Junwei Han , Yue Yang , Zerui Chen , Hao Bin Wu
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (2) : 300 -308.
Optimizing Hydrazine Activation on Dual-Site Co-Zn Catalysts for Direct Hydrazine-Hydrogen Peroxide Fuel Cells
Direct hydrazine-hydrogen peroxide fuel cells (DHzHPFCs) offer unique advantages for air-independent applications, but their commercialization is impeded by the lack of high-performance and low-cost catalysts. This study reports a novel dual-site Co-Zn catalyst designed to enhance the hydrazine oxidation reaction (HzOR) activity. Density functional theory calculations suggested that incorporating Zn into Co catalysts can weaken the binding strength of the crucial N2H3* intermediate, which limits the rate-determining N2H3* desorption step. The synthesized p-Co9Zn1 catalyst exhibited a remarkably low reaction potential of −0.15 V versus RHE at 10 mA cm−2, outperforming monometallic Co catalysts. Experimental and computational analyses revealed dual active sites at the Co/ZnO interface, which facilitate N2H3* desorption and subsequent N2H2* formation. A liquid N2H4-H2O2 fuel cell with p-Co9Zn1 catalyst achieved a high open circuit voltage of 1.916 V and a maximum power density of 195 mW cm−2, demonstrating the potential application of the dual-site Co-Zn catalyst. This rational design strategy of tuning the N2H3* binding energy through bimetallic interactions provides a pathway for developing efficient and economical non-precious metal electrocatalysts for DHzHPFCs.
binding energy / direct hydrazine-hydrogen peroxide fuel cells / dual-site electrocatalyst / hydrazine oxidation reaction / N2H3* intermediate
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |