Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries

Yi Liu , Tianyi Hou , Wei Zhang , Bin Gou , Faqiang Li , Haonan Wang , Xin Deng , Dinggen Li , Henghui Xu , Yunhui Huang

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (1) : 190 -200.

PDF (3084KB)
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (1) : 190 -200. DOI: 10.1002/idm2.12225
RESEARCH ARTICLE

Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries

Author information +
History +
PDF (3084KB)

Abstract

Commercial polyolefin separators in lithium batteries encounter issues of uncontrolled lithium-dendrite growth and safety incidents due to their low Li+ transference numbers (tLi+) and low melting points. To address these challenges, this study proposes an innovative approach by upgrading conventional separators through the incorporation of metal-organic framework (MOF)-confined polyoxometalate (POM). The presence of POM restricts anion diffusion through electrostatic repulsion while facilitating Li+ transport within MOF nanochannels through their affinity for lithium ions. Moreover, MOF confinement effectively mitigates the acidification of electrolytes induced by POM. As a proof-of-concept, the polypropylene separators decorated with phosphotungstic acid@UIO66 (denoted as PW12@UIO66-PP) exhibit remarkable lithium-ion conductivity of 0.78 mS cm?1 with a high (tLi+) of 0.75 at room temperature. The modified separators also display excellent thermal stability, preventing significant shrinkage even at 150°C. Furthermore, Li symmetric cells employing PW12@UIO66-PP separators exhibit stable cycling for 1000 h, benefiting from rapid Li-ion transport and uniform deposition. Additionally, the modified separator shows promising adaptability to industrial manufacturing of lithium-ion batteries, as evidenced by the assembly of a 4 Ah NCM811/graphite pouch cell that retains 97% capacity after 350 cycles at C/3, thus highlighting its potential for practical applications.

Keywords

conductivity / dendrite growth / lithium batteries / polyoxometalate / separators / thermal stability

Cite this article

Download citation ▾
Yi Liu, Tianyi Hou, Wei Zhang, Bin Gou, Faqiang Li, Haonan Wang, Xin Deng, Dinggen Li, Henghui Xu, Yunhui Huang. Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries. Interdisciplinary Materials, 2025, 4(1): 190-200 DOI:10.1002/idm2.12225

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiC, LiuS, ShiC, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun. 2019;10(1):1363.

[2]

GoodenoughJB, ParkK-S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167-1176.

[3]

YangQY, YuZ, LiY, et al. Understanding and modifications on lithium deposition in lithium metal batteries. Rare Met. 2022;41(8):2800-2818.

[4]

ZhaoQ, ChenX, HouW, et al. A facile, scalable, high stability lithium metal anode. SusMat. 2022;2(1):104-112.

[5]

LiuZ, FuX, LiZ, et al. Integrated anode with 3D electron/ion conductive network for stable lithium metal batteries. Energy Storage Mater. 2024;66:103201.

[6]

TikekarMD, Choudhury S, TuZ, ArcherLA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1(9):16114.

[7]

BrissotC, RossoM, ChazalvielJ, et al. Dendritic growth mechanisms in lithiumrpolymer cells. J Power Sources. 1999;81:925-929.

[8]

ShiK, DuttaA, HaoY, et al. Electrochemical polishing: an effective strategy for eliminating Li dendrites. Adv Funct Mater. 2022;32(33):2203652.

[9]

WangF, KeX, ShenK, et al. A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv. Mater. Technol. 2021;7(5):2100772.

[10]

RodriguesMTF, BabuG, GullapalliH, et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy. 2017;2(8):17108.

[11]

WaqasM, AliS, FengC, Chen D, HanJ, HeW. Recent development in separators for high-temperature lithium-ion batteries. Small. 2019;15(33):1901689.

[12]

ChenD, LiuY, FengC, et al. Unified throughout-pore microstructure enables ultrahigh separator porosity for robust high-flux lithium batteries. Electron. 2023;1(1):e1.

[13]

WangJ, HuZ, YinX, et al. Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochim Acta. 2015;159:61-65.

[14]

LiangJ, ChenQ, LiaoX, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew Chem Int Ed. 2020;59(16):6561-6566.

[15]

ZhuX, JiangX, AiX, YangH, CaoY. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci. 2016;504:97-103.

[16]

ZhaoCZ, ChenPY, ZhangR, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4(11):eaat3446.

[17]

SunS, WangJ, CuiX, et al. Plasma-strengthened ionic conducting network enabling highly safety separator toward all-climate lithium metal batteries. Appl Surf Sci. 2024;644:158796.

[18]

YanZ, PanHY, WangJY, et al. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Met. 2020;40(6):1357-1365.

[19]

QiF, SunZ, FanX, et al. Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: status and perspectives. Adv Energy Mater. 2021;11(20):2100387.

[20]

HuoH, WuB, ZhangT, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019;18:59-67.

[21]

HorikeS, Umeyama D, KitagawaS. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc Chem Res. 2013;46(11):2376-2384.

[22]

WangZ, WangS, WangA, et al. Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J Mater Chem A. 2018;6(35):17227-17234.

[23]

BaiS, SunY, YiJ, HeY, QiaoY, Zhou H. High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule. 2018;2(10):2117-2132.

[24]

YangLY, CaoJH, LiangWH, Wang YK, WuDY. Effects of the separator MOF-Al2O3 coating on battery rate performance and solid–electrolyte interphase formation. ACS Appl Mater Interfaces. 2022;14(11):13722-13732.

[25]

ZhouC, DongC, WangW, et al. An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries. Interdiscip Mater. 2024;3(2):306-315.

[26]

LongDL, Burkholder E, CroninL. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev. 2007;36(1):105-121.

[27]

LuoX, LiF, PengF, Huang L, LangX, ShiM. Strategies for perfect confinement of POM@MOF and its applications in producing defect-rich electrocatalyst. ACS Appl Mater Interfaces. 2021;13(48):57803-57813.

[28]

LiuY, TangC, ChengM, et al. Polyoxometalate@metal–organic framework composites as effective photocatalysts. ACS Catal. 2021;11(21):13374-13396.

[29]

YeG, HuL, GuY, et al. Synthesis of polyoxometalate encapsulated in UiO-66(Zr) with hierarchical porosity and double active sites for oxidation desulfurization of fuel oil at room temperature. J Mater Chem A. 2020;8(37):19396-19404.

[30]

CavkaJH, Jakobsen S, OlsbyeU, et al. A new zirconium inorganic building brick forming metal-organic frameworks with exceptional stability. J Am Chem Soc. 2008;130(42):13850-13851.

[31]

HuD, SongX, WuS, et al. Solvothermal synthesis of co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. Chin J Catal. 2021;42(2):356-366.

[32]

J JiaS, ZhangYF, LiuY, QinFX, RenHT, Wu SH. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material. J Hazard Mater. 2013;262:589-597.

[33]

YangY, YouY, WuJ, FengJ, ZhangY. Phosphotungstic acid encapsulated in USY zeolite as catalysts for the synthesis of cyclohexylbenzene. J Iran Chem Soc. 2020;18(3):573-580.

[34]

FangX, WuS, WuY, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms. Appl Surf Sci. 2020;518:146226.

[35]

LiX, ZhangF, ZhangM, Zhou Z, ZhouX. Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery. J Energy Storage. 2023;59:106473.

[36]

ZhaoT, XiaoP, NieS, LuoM, ZouM, ChenY. Recent progress of metal-organic frameworks based high performance batteries separators: a review. Coord Chem Rev. 2024;502:215592.

[37]

BaiP, LiJ, BrushettFR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9(10):3221-3229.

[38]

HaoZ, WangC, WuY, et al. Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv Energy Mater. 2023;13(28):2204007.

[39]

SunS, WangJ, ChenX, et al. Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries. Adv Energy Mater. 2022;12(41):2202206.

[40]

GaoY, RojasT, WangK, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat Energy. 2020;5(7):534-542.

[41]

LiuZ, GuoD, FanW, XuF, YaoX. Expansion-tolerant lithium anode with built-in LiF-rich interface for stable 400 wh kg-1 lithium metal pouch cells. ACS Materials Letters. 2022;4(8):1516-1522.

[42]

WangWW, GuY, YanH, et al. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features. Chem. 2020;6(10):2728-2745.

[43]

JaggerB, PastaM. Solid electrolyte interphases in lithium metal batteries. Joule. 2023;7(10):2228-2244.

[44]

DengZ, HuangZ, ShenY, et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-Ion pouch cells. Joule. 2020;4(9):2017-2029.

[45]

KresseG, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter Mater Phys. 1996;54(16):11169-11186.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3084KB)

954

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/