The integral role of high-entropy alloys in advancing solid-state hydrogen storage

Zhao Ding , Yuting Li , Han Jiang , Yang Zhou , Haiyi Wan , Junqi Qiu , Fangning Jiang , Jun Tan , Wenjia Du , Yu’an Chen , Leon L. Shaw , Fusheng Pan

Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (1) : 75 -108.

PDF (7132KB)
Interdisciplinary Materials ›› 2025, Vol. 4 ›› Issue (1) : 75 -108. DOI: 10.1002/idm2.12216
REVIEW

The integral role of high-entropy alloys in advancing solid-state hydrogen storage

Author information +
History +
PDF (7132KB)

Abstract

High-entropy alloys (HEAs) have emerged as a groundbreaking class of materials poised to revolutionize solid-state hydrogen storage technology. This comprehensive review delves into the intricate interplay between the unique compositional and structural attributes of HEAs and their remarkable hydrogen storage performance. By meticulously exploring the design strategies and synthesis techniques, encompassing experimental procedures, thermodynamic calculations, and machine learning approaches, this work illuminates the vast potential of HEAs in surmounting the challenges faced by conventional hydrogen storage materials. The review underscores the pivotal role of HEAs’ diverse elemental landscape and phase dynamics in tailoring their hydrogen storage properties. It elucidates the complex mechanisms governing hydrogen absorption, diffusion, and desorption within these novel alloys, offering insights into enhancing their reversibility, cycling stability, and safety characteristics. Moreover, it highlights the transformative impact of advanced characterization techniques and computational modeling in unraveling the structure–property relationships and guiding the rational design of high-performance HEAs for hydrogen storage applications. By bridging the gap between fundamental science and practical implementation, this review sets the stage for the development of next-generation solid-state hydrogen storage solutions. It identifies key research directions and strategies to accelerate the deployment of HEAs in hydrogen storage systems, including the optimization of synthesis routes, the integration of multiscale characterization, and the harnessing of data-driven approaches. Ultimately, this comprehensive analysis serves as a roadmap for the scientific community, paving the way for the widespread adoption of HEAs as a disruptive technology in the pursuit of sustainable and efficient hydrogen storage for a clean energy future.

Keywords

compositional influence / design strategies / high-entropy alloys / solid-state hydrogen storage / structural characteristics

Cite this article

Download citation ▾
Zhao Ding, Yuting Li, Han Jiang, Yang Zhou, Haiyi Wan, Junqi Qiu, Fangning Jiang, Jun Tan, Wenjia Du, Yu’an Chen, Leon L. Shaw, Fusheng Pan. The integral role of high-entropy alloys in advancing solid-state hydrogen storage. Interdisciplinary Materials, 2025, 4(1): 75-108 DOI:10.1002/idm2.12216

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meena P, Singh R, Sharma V, Jain I. Role of NiMn9.3Al4.0-Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2. J Magnes Alloy. 2018;6(3):318-325.

[2]

Shang Y, Pistidda C, Gizer G, Klassen T, Dornheim M. Mg-based materials for hydrogen storage. J Magnes Alloy. 2021;9(6):1837-1860.

[3]

He G, Mallapragada D, Bose A, Heuberger-Austin CF, Gençer E. Sector coupling via hydrogen to lower the cost of energy system decarbonization. Energy Environ Sci. 2021;14(9):4635-4646.

[4]

Edwards P, Kuznetsov VL, David WI. Hydrogen energy. Philos Transact A Math Phys Eng Sci. 2007;365(1853):1043-1056.

[5]

Wan H, Qiu J, Guan H, et al. FCC/α-Fe biphasic nano-sites synergize with CNTs to enhance reversible hydrogen storage of MgH2. Inorg Chem Front. 2024;11:4197-4206.

[6]

Wang L, Zhang L, Lu X, et al. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chem Eng J. 2023;465:142766.

[7]

Ding Z, Li H, Shaw L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem Eng J. 2020;385:123856.

[8]

Ding X, Chen R, Chen X, et al. A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment. J Magnes Alloy. 2023;11(3):903-915.

[9]

Bououdina M, Grant D, Walker G. Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int J Hydrogen Energy. 2006;31(2):177-182.

[10]

Ding Z, Lu Y, Li L, Shaw L. High reversible capacity hydrogen storage through Nano-LiBH4 +Nano-MgH2 system. Energy Storage Mater. 2019;20:24-35.

[11]

Andersson J, Grönkvist S. Large-scale storage of hydrogen. Int J Hydrogen Energy. 2019;44(23):11901-11919.

[12]

Zhong T, Zhang H, Song M, et al. FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage. Int J Miner, Metall Mater. 2023;30(11):2270-2279.

[13]

Jena P. Materials for hydrogen storage: past, present, and future. J Phys Chem Lett. 2011;2(3):206-211.

[14]

Weidenthaler C, Felderhoff M. Solid-state hydrogen storage for mobile applications: quo vadis? Energy Environ Sci. 2011;4(7):2495-2502.

[15]

Ding Z, Wu P, Shaw L. Solid-state hydrogen desorption of 2 MgH2 + LiBH4 nano-mixture: a kinetics mechanism study. J Alloys Compd. 2019;806:350-360.

[16]

Abe J, Popoola A, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy. 2019;44(29):15072-15086.

[17]

Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U. Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys. 2007;9(21):2643-2653.

[18]

Ding Z, Li S, Zhou Y, et al. LiBH4 for hydrogen storage—New perspectives. Nano Mater Sci. 2020;2(2):109-119.

[19]

Li S, Wu F, Zhang Y, et al. Enhanced hydrogen storage performance of magnesium hydride catalyzed by medium-entropy alloy CrCoNi nanosheets. Int J Hydrogen Energy. 2024;50:1015-1024.

[20]

Zhang J, Yan S, Xia G, et al. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride. J Magnes Alloy. 2021;9(2):647-657.

[21]

Ding Z, Li Y, Yang H, et al. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J Magnes Alloy. 2022;10(11):2946-2967.

[22]

Zhang K, Chang Y, Lei J, et al. Synergy of inside doped metals?outside coated graphene to enhance hydrogen storage in magnesium-based alloys. J Magnes Alloy. 2023;12(6):2462-2471.

[23]

Zhang B, Xie X, Wang Y, et al. In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH2 by adding porous Ni3ZnC0.7/Ni loaded carbon nanotubes microspheres. J Magnes Alloy. 2022;12(3):1227-1238.

[24]

Li S, Zhang L, Wu F, Jiang Y, Yu X. Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chin Chem Lett. 2024. In press.

[25]

Wang L, Zhang L, Wu F, Jiang Y, Yao Z, Chen L. Promoting catalysis in magnesium hydride for solid-state hydrogen storage through manipulating the elements of high entropy oxides. J Magnes Alloy. 2024. In prees.

[26]

Wang S, Gao M, Yao Z, et al. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2. J Magnes Alloy. 2022;10(12):3354-3366.

[27]

Zhao Y, Liu Z, Liu J, et al. Improvement effect of reversible solid solutions Mg2Ni(Cu)/Mg2Ni(Cu)H4 on hydrogen storage performance of MgH2. J Magnes Alloy. 2022;12(1):197-208.

[28]

Ding Z, Li Y, Hou Q, Li Q, Chen Y, Pan F. The application of metal-oragnic frameworks on magnesium-based hydrogen storage materials. Chin J Rare Met. 2023;47(12):1603-1613.

[29]

Song M, Wu F, Jiang Y, et al. Optimizing FeCoNiCrTi high-entropy alloy with hydrogen pumping effect to boost de/hydrogenation performance of magnesium hydride. Rare Met. 2024;43(7):3273-3285.

[30]

Schilter D. Hydrogen storage: a reformed approach. Nat Rev Chem. 2017;1(3):0027.

[31]

Li Q, Lu Y, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J Magnes Alloy. 2021;9(6):1922-1941.

[32]

Yang H, Ding Z, Li Y, Li S, et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023;42:2906-2967.

[33]

Sakintuna B, Lamaridarkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review☆. Int J Hydrogen Energy. 2007;32(9):1121-1140.

[34]

Rusman N, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrogen Energy. 2016;41(28):12108-12126.

[35]

Li R, Gao J, Fan K. Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. Mater Sci Forum. 2011;686:235-241.

[36]

Mertens R, Sun Z, Music D, Schneider JM. Effect of the composition on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab initio calculations. Adv Eng Mater. 2004;6(11):903-907.

[37]

Miracle D. Critical assessment 14: high entropy alloys and their development as structural materials. Mater Sci Technol. 2015;31(10):1142-1147.

[38]

Gorsse S, Nguyen M, Senkov O, Miracle D. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief. 2018;21(8):2664-2678.

[39]

Abu-Odeh A, Galvan E, Kirk T, et al. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 2018;152:41-57.

[40]

George E, Raabe D, Ritchie R. High-entropy alloys. Nat Rev Mater. 2019;4(8):515-534.

[41]

Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349-362.

[42]

Nygård MM, Ek G, Karlsson D, Sahlberg M, Sørby MH, Hauback BC. Hydrogen storage in high-entropy alloys with varying degree of local lattice strain. Int J Hydrogen Energy. 2019;44(55):29140-29149.

[43]

Baldenebro-Lopez F, Gómez-Esparza C, Baldenebro-Lopez JA, et al. Effect on microstructure and microhardness of equiatomic NiCoAlFeMoTi high entropy alloys produced by mechanical alloying and subsequent Arc-melting. Microsc Microanal. 2016;22(S3):1980-1981.

[44]

Feng R, Gao M, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy. Acta Mater. 2018;146:280-293.

[45]

Feuerbacher M, Lienig T, Thomas C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system. Scr Mater. 2018;152:40-43.

[46]

Hu J, Zhang J, Li M, et al. The origin of anomalous hydrogen occupation in high entropy alloys. J Mater Chem A. 2022;10(13):7228-7237.

[47]

Shen H, Zhang J, Hu J, et al. A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage. Nanomaterials. 2019;9(2):248.

[48]

Sahlberg M, Karlsson D, Zlotea C, Jansson U. Superior hydrogen storage in high entropy alloys. Sci Rep. 2016;6:36770.

[49]

Marques F, Balcerzak M, Winkelmann F, Zepon G, Felderhoff M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ Sci. 2021;14(10):5191-5227.

[50]

Zhang C, Wu Y, You L, Cao X, Lu Z, Song X. Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy. J Alloys Compd. 2019;781:613-620.

[51]

Dangwal S, Edalati K. High-entropy alloy TiV2ZrCrMnFeNi for hydrogen storage at room temperature with full reversibility and good activation. Scr Mater. 2024;238:115774.

[52]

Ma X, Ding X, Chen R, Chen X, Song Q, Cui H. Study on microstructure and the hydrogen storage behavior of a TiVZrNbFe high-entropy alloy. Intermetallics. 2023;157:107885.

[53]

Liang J, Li G, Ding X, et al. Effect of C14 Laves/BCC on microstructure and hydrogen storage properties of (Ti32.5V27.5Zr7.5Nb32.5) 1–xFex (x = 0.03, 0.06, 0.09) high entropy hydrogen storage alloys. J Energy Storage. 2023;73:108852.

[54]

Chen J, Huang H, Xu T, et al. Enhancement of vanadium addition on hydrogen storage properties of high entropy alloys TiZrFeMnCrVx. Int J Hydrogen Energy. 2024;50:1223-1233.

[55]

Uno M, Takahashi K, Maruyama T, Muta H, Yamanaka S. Hydrogen solubility of BCC titanium alloys. J Alloys Compd. 2004;366(1-2):213-216.

[56]

Santos S, Huot J. Hydrogen storage in Ti–Mn–(FeV) BCC alloys. J Alloys Compd. 2009;480(1):5-8.

[57]

Kumar A, Banerjee S, Pillai C, Bharadwaj SR. Hydrogen storage properties of Ti2–xCrVMx (M = Fe, Co, Ni) alloys. Int J Hydrogen Energy. 2013;38(30):13335-13342.

[58]

Yang S, Yang F, Wu C, Chen Y, Mao Y, Luo L. Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40–xZrx (0 ≤ x ≤ 2) alloys. J Alloys Compd. 2016;663:460-465.

[59]

Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. J Alloys Compd. 2021;861:158615.

[60]

Martinez-Garcia A, Estrada-Guel I, Reguera E, et al. Design and mechanosynthesis of Low-Weight High-Entropy alloys with hydrogen storage potential properties. Int J Hydrogen Energy. 2024;50:670-684.

[61]

Strozi RB, Leiva DR, Huot J, Botta WJ, Zepon G. Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys. Int J Hydrogen Energy. 2021;46(2):2351-2361.

[62]

Wu S, Chen Y, Kang W, Cai X, Zhou L. Hydrogen storage properties of MgTiVZrNb high-entropy alloy and its catalytic effect upon hydrogen storage in Mg. Int J Hydrogen Energy. 2024;50:1113-1128.

[63]

Strozi R, Sakaki K, Kim H, et al. High entropy alloys containing immiscible Mg and refractory elements: synthesis, structure, and hydrogen storage properties. J Alloys Compd. 2023;969:172415.

[64]

Kumar S, Jain A, Ichikawa T, Kojima Y, Dey GK. Development of vanadium based hydrogen storage material: a review. Renew Sustain Energy Rev. 2017;72:791-800.

[65]

Pasquini L, Sakaki K, Akiba E, et al. Magnesium-and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Prog Engerg. 2022;4(3):032007.

[66]

Cardoso K, Roche V, Jorge A, Jr., Antiqueira F, Zepon G, Champion Y. Hydrogen storage in MgAlTiFeNi high entropy alloy. J Alloys Compd. 2021;858:158357.

[67]

Marques F, Pinto H, Figueroa S, et al. Mg-containing multi-principal element alloys for hydrogen storage: a study of the MgTiNbCr0.5Mn0.5Ni0.5 and Mg0.68TiNbNi0.55 compositions. Int J Hydrogen Energy. 2020;45(38):19539-19552.

[68]

Strozi R, Leiva D, Huot J, Botta WJ, Zepon G. An approach to design single BCC Mg-containing high entropy alloys for hydrogen storage applications. Int J Hydrogen Energy. 2021;46(50):25555-25561.

[69]

Zhang Y, Wei X, Zhang W, et al. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. Int J Hydrogen Energy. 2020;45(58):33832-33845.

[70]

Lv W, Yuan J, Zhang B, Wu Y. Influence of the substitution Ce for La on structural and electrochemical characteristics of La0.75-xCexMg0.25Ni3Co0.5 (x = 0, 0.05, 0.1, 0.15, 0.2 at.%) hydrogen storage alloys. J Alloys Compd. 2018;730:360-368.

[71]

Tian X, Wei W, Duan R, et al. Preparation and electrochemical properties of La0.70MgxNi2.45Co0.75Al0.30 (x = 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys. J Alloys Compd. 2016;672:104-109.

[72]

Haché M, Cheng C, Zou Y. Nanostructured high-entropy materials. J Mater Res. 2020;35(8):1051-1075.

[73]

Guo S, Hu Q, Ng C, Liu C. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013;41:96-103.

[74]

Luan H, Shao Y, Li J, et al. Phase stabilities of high entropy alloys. Scr Mater. 2020;179:40-44.

[75]

Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nat Commun. 2017;8:15687.

[76]

Tsai MH, Fan A, Wang H. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J Alloys Compd. 2017;695:1479-1487.

[77]

Wang Z, Qiu W, Yang Y, Liu C. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics. 2015;64:63-69.

[78]

Chang X, Zeng M, Liu K, Fu L. Phase engineering of high-entropy alloys. Adv Mater. 2020;32(14):e1907226.

[79]

Zhang Y, Zhou Y, Lin J, Chen G, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534-538.

[80]

Li R, Xie L, Wang W, Liaw P, Zhang Y. High-throughput calculations for high-entropy alloys: a brief review. Front Mater. 2020;7:290.

[81]

Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM. 2013;65(12):1759-1771.

[82]

Ye Y, Wang Q, Lu J, Liu C, Yang Y. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater. 2015;104:53-55.

[83]

Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2-3):233-238.

[84]

King D, Middleburgh S, McGregor A, Cortie M. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 2016;104:172-179.

[85]

Poletti M, Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014;75:297-306.

[86]

Fang S, Xiao X, Xia L, Li W, Dong Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids. 2003;321(1-2):120-125.

[87]

Guo S, Liu C. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Int. 2011;21(6):433-446.

[88]

Guo S, Ng C, Lu J, Liu C. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):213.

[89]

Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol. 2015;31(10):1223-1230.

[90]

Shen H, Hu J, Li P, et al. Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage. J Mater Sci Technol. 2020;55:116-125.

[91]

Nygård M, Ek G, Karlsson D, Sørby M, Sahlberg M, Hauback B. Counting electrons—a new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater. 2019;175:121-129.

[92]

Huang L, Long M, Liu W, Li S. Effects of Cr on microstructure, mechanical properties and hydrogen desorption behaviors of ZrTiNbMoCr high entropy alloys. Mater Lett. 2021;293:129718.

[93]

Silva B, Zlotea C, Champion Y, Botta WJ, Zepon G. Design of TiVNb-(Cr, Ni or Co) multicomponent alloys with the same valence electron concentration for hydrogen storage. J Alloys Compd. 2021;865:158767.

[94]

Zlotea C, Sow MA, Ek G, et al. Hydrogen sorption in TiZrNbHfTa high entropy alloy. J Alloys Compd. 2019;775:667-674.

[95]

Li W, Wu E, Ma P, Sun K, Chen D. Hydrogen storage properties of Ti1–xScxMnCr laves phase alloys. Int J Energy Res. 2013;37(7):686-697.

[96]

Floriano R, Zepon G, Edalati K, et al. Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. Int J Hydrogen Energy. 2021;46(46):23757-23766.

[97]

Zhou P, Cao Z, Xiao X, et al. Study on low-vanadium Ti–Zr–Mn–Cr–V based alloys for high-density hydrogen storage. Int J Hydrogen Energy. 2022;47(3):1710-1722.

[98]

Zhou P, Cao Z, Xiao X, et al. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. J Alloys Compd. 2021;875:160035.

[99]

Kao Y, Chen S, Sheu J, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int J Hydrogen Energy. 2010;35(17):9046-9059.

[100]

Li Z, Wang H, Ouyang L, Liu J, Zhu M. Achieving superior de-/hydrogenation properties of C15 laves phase Y-Fe-Al alloys by A-side substitution. J Alloys Compd. 2019;787:158-164.

[101]

Lys A, Fadonougbo J, Faisal M, et al. Enhancing the hydrogen storage properties of AxBy intermetallic compounds by partial substitution: a short review. Hydrogen. 2020;1(1):38-63.

[102]

Liu P, Xie X, Xu L, Li X, Liu T. Hydrogen storage properties of (Ti0.85Zr0.15)1.05 Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Prog Nat Sci Int. 2017;27(6):652-657.

[103]

Hariyadi A, Suwarno S, Denys R, von Colbe J, Sætre T, Yartys V. Modeling of the hydrogen sorption kinetics in an AB2 laves type metal hydride alloy. J Alloys Compd. 2022;893:162135.

[104]

Murashkina T, Syrtanov M, Laptev R, Lider A. Cyclic stability of the C36-type TiCr2 laves phase synthesized in the abnormal glow discharge plasma under hydrogenation. Int J Hydrogen Energy. 2019;44(13):6709-6719.

[105]

Chen S, Lee P, Lee H, Su H. Hydrogen storage of C14-CruFevMnwTixVyZrz alloys. Mater Chem Phys. 2018;210:336-347.

[106]

Floriano R, Zepon G, Edalati K, et al. Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations. Int J Hydrogen Energy. 2020;45(58):33759-33770.

[107]

Zhao S, Li Z, Zhu C, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv. 2021;7(5):3108-3137.

[108]

Wang J, Song L, Huo J, Gao M, Zhang Y. Designing advanced amorphous/nanocrystalline alloys by controlling the energy state. Adv Mater. 2024;2311406.

[109]

Zhang Y, Zhai T, Li B, Ren H, Bu W, Zhao D. Highly improved gaseous hydrogen storage characteristics of the nanocrystalline and amorphous Nd–Cu-added Mg2Ni-type alloys by melt spinning. J Mater Sci Technol. 2014;30(10):1020-1026.

[110]

Zhang Y, Li B, Ren H, et al. Hydrogen storage kinetics of nanocrystalline and amorphous LaMg12-type alloy–Ni composites synthesized by mechanical milling. J Mater Sci Technol. 2016;32(3):218-225.

[111]

Huang L, Wang H, Ouyang L, Zhu M, Lin H. Decorating crystalline YFe2–Al on the Mg60La10Ni20Cu10 amorphous alloy as “hydrogen pump” to realize fast de/hydrogenation. J Mater Sci Technol. 2024;173:72-79.

[112]

Zhang Y, Zhu J, Li S, Wang J, Ren Z. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J Mater Sci Technol. 2022;102:66-71.

[113]

Huang L, Lin H, Wang H, Ouyang L, Zhu M. Amorphous alloys for hydrogen storage. J Alloys Compd. 2023;941:168945.

[114]

Li J, Chen H, Feng H, et al. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites. J Mater Sci Technol. 2020;54:14-19.

[115]

Giemza A, Sozańska M, Bala H. Modification of hydrogenation and corrosion properties of hydrogen storage material by amorphous TiCrFeCoNi HEA layer. Materials. 2022;15(7):2593.

[116]

Zhou H, Ding Z, Chen Y, et al. Enhancement of hydrogen storage properties from amorphous Mg85Ni5Y10 alloy. J Non-Cryst Solids. 2023;605:122167.

[117]

Han B, Yu S, Wang H, Lu Y, Lin H. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scr Mater. 2022;216:114736.

[118]

Guo L, Gu J, Gong X, Ni S, Song M. CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening. Sci. China Mater. 2019;63(2):288-299.

[119]

Chen H, Mao H, Chen Q. Database development and calphad calculations for high entropy alloys: challenges, strategies, and tips. Mater Chem Phys. 2018;210:279-290.

[120]

Guruvidyathri K, Hari Kumar K, Yeh JW, Murty B. Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results. JOM. 2017;69(11):2113-2124.

[121]

Gorsse S, Tancret F. Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J Mater Res. 2018;33(19):2899-2923.

[122]

Syed Ghazi S, Ravi K. Phase-evolution in high entropy alloys: role of synthesis route. Intermetallics. 2016;73:40-42.

[123]

Ruiz-Yi B, Bunn J, Stasak D, et al. The different roles of entropy and solubility in high entropy alloy stability. ACS Comb Sci. 2016;18(9):596-603.

[124]

Nagase T, Todai M, Wang P, Sun S, Nakano T. Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys. Mater Chem Phys. 2022;276:125409.

[125]

Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scr Mater. 2020;178:387-390.

[126]

Sanchez J, Vicario I, Albizuri J, Guraya T, Garcia JC. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. J Mater Res Technol. 2019;8(1):795-803.

[127]

Guruvidyathri K, Murty B, Yeh J, Hari Kumar KC. Gibbs energy-composition plots as a tool for high-entropy alloy design. J Alloys Compd. 2018;768:358-367.

[128]

Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad. 2015;50:32-48.

[129]

Mao H, Chen H, Chen Q. TCHEA1: A thermodynamic database not limited for “high entropy” alloys. J Ph Equilibria Diffus. 2017;38(4):353-368.

[130]

Hu J, Zhang J, Xiao H, et al. A density functional theory study of the hydrogen absorption in high entropy alloy TiZrHfMoNb. Inorganic Chem. 2020;59(14):9774-9782.

[131]

Gong J, Li Y, Song X, Wang Y, Chen Z. Hydrogen storage of high entropy alloy NbTiVZr and its effect on mechanical properties: a first-principles study. Vacuum. 2024;219:112754.

[132]

Zhang J, Hu J, Xiao H, et al. A first-principles study of hydrogen desorption from high entropy alloy TiZrVMoNb hydride surface. Metals. 2021;11(4):553.

[133]

Hu J, Zhang J, Xiao H, et al. A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb. Int J Hydrogen Energy. 2021;46(40):21050-21058.

[134]

Hart G, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater. 2021;6(8):730-755.

[135]

Zhou P, Xiao X, Zhu X, et al. Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems. Energy Storage Mater. 2023;63:102964.

[136]

Butler K, Davies D, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559(7715):547-555.

[137]

Ponsoni J, Aranda V, Nascimento T, Strozi R, Botta W, Zepon G. Design of multicomponent alloys with C14 laves phase structure for hydrogen storage assisted by computational thermodynamic. Acta Mater. 2022;240:118317.

[138]

Huang E, Lee WJ, Singh S, et al. Machine-learning and high-throughput studies for high-entropy materials. Mater Sci Eng R Rep. 2022;147:100645.

[139]

Ferrari A, Dutta B, Gubaev K, et al. Frontiers in atomistic simulations of high entropy alloys. J Appl Phys. 2020;128(15):150901.

[140]

Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. Npj Comput Mater. 2019;5(1):128.

[141]

Qiao L, Liu Y, Zhu J. A focused review on machine learning aided high-throughput methods in high entropy alloy. J Alloys Compd. 2021;877:160295.

[142]

Zhou X-, Zhu J, Wu Y, Yang X, Lookman T, Wu H. Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients. Acta Mater. 2022;224:117535.

[143]

Suwarno S, Dicky G, Suyuthi A, et al. Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides. Int J Hydrogen Energy. 2022;47(23):11938-11947.

[144]

Lee S, Byeon S, Kim H, Jin H, Lee S. Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater Des. 2021;197:109260.

[145]

Hou S, Sun M, Bai M, Lin D, Li Y, Liu W. A hybrid prediction frame for HEAs based on empirical knowledge and machine learning. Acta Mater. 2022;228:117742.

[146]

Kim J, Ha T, Lee J, Lee YS, Shim JH. Prediction of pressure-composition-temperature curves of AB2-type hydrogen storage alloys by machine learning. Met Mater Int. 2022;29(3):861-869.

[147]

Lu Z, Wang J, Wu Y, Guo X, Xiao W. Predicting hydrogen storage capacity of V–Ti–Cr–Fe alloy via ensemble machine learning. Int J Hydrogen Energy. 2022;47(81):34583-34593.

[148]

Witman M, Ek G, Ling S, et al. Data-driven discovery and synthesis of high entropy alloy hydrides with targeted thermodynamic stability. Chem Mater. 2021;33(11):4067-4076.

[149]

Panwar K, Srivastava S. On structural model of AB5-type multi-element hydrogen storage alloy. Int J Hydrogen Energy. 2019;44(57):30208-30217.

[150]

Li Z, Ludwig A, Savan A, Springer H, Raabe D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J Mater Res. 2018;33(19):3156-3169.

[151]

Lai Q, Sun Y, Wang T, et al. How to design hydrogen storage materials? Fundamentals, synthesis, and storage tanks. Adv Sustain Syst. 2019;3(9):1900043.

[152]

Naher S, Brabazon D, Looney L. Simulation of the stir casting process. J Mater Process Technol. 2003;143-144:567-571.

[153]

Pattnaik S, Karunakar D, Jha P. Developments in investment casting process—a review. J Mater Process Technol. 2012;212(11):2332-2348.

[154]

Biesuz M, Saunders T, Veverka J, et al. Solidification microstructures of multielement carbides in the high entropy Zr-Nb-Hf-Ta-Cx system produced by arc melting. Scr Mater. 2021;203:114091.

[155]

Zhang Z, Liu Z, Lu J-, Shen X, Wang F, Wang Y. The sintering mechanism in spark plasma sintering—proof of the occurrence of spark discharge. Scr Mater. 2014;81:56-59.

[156]

Hu Z, Zhang Z, Cheng X, Wang F, Zhang Y, Li S. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications. Mater Des. 2020;191:108662.

[157]

Kunce I, Polański M, Czujko T. Microstructures and hydrogen storage properties of LaNiFeVMn alloys. Int J Hydrogen Energy. 2017;42(44):27154-27164.

[158]

Nishiyama H, Sawada T, Takana H, Tanaka M, Ushio M. Computational simulation of arc melting process with complex interactions. ISIJ Int. 2006;46(5):705-711.

[159]

Knight R, Smith R, Apelian D. Application of plasma arc melting technology to processing of reactive metals. Int Mater Rev. 1991;36(1):221-252.

[160]

Zhang L, Li X, Qu X, et al. Powder metallurgy route to ultrafine-grained refractory metals. Adv Mater. 2022;35(50):2205807.

[161]

Xing Y, Li C, Mu Y, et al. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy. J Mater Sci Technol. 2023;132:119-131.

[162]

Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J Alloys Compd. 2011;509: S229-S234.

[163]

Enayati M, Mohamed F. Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int Mater Rev. 2014;59(7):394-416.

[164]

Ammar H, Sivasankaran S, Alaboodi A. Investigation of the microstructure and compressibility of biodegradable Fe-Mn-Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying. Materials. 2021;14(11):3088.

[165]

Kumar A, Singh A, Suhane A. Mechanically alloyed high entropy alloys: existing challenges and opportunities. J Mater Res Technol. 2022;17:2431-2456.

[166]

Geng F, Gang L, Wang Y, Li Y, Yuan Z. Numerical investigation on particle mixing in a ball mill. Powder Technol. 2016;292:64-73.

[167]

Schmelzer J, Baumann T, Dieck S, Krüger M. Hardening of V–Si alloys during high energy ball milling. Powder Technol. 2016;294:493-497.

[168]

Yu P, Zhang L, Cheng H, et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics. 2016;70:82-87.

[169]

Mucsi G. A review on mechanical activation and mechanical alloying in stirred media mill. Chem Eng Res Des. 2019;148:460-474.

[170]

Tiwary C, Kishore S, Vasireddi R, Mahapatra D, Ajayan P, Chattopadhyay K. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Mater Today. 2017;20(2):67-73.

[171]

Han T, Li J, Zhao N, He C. Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling. Carbon. 2020;159:311-323.

[172]

Mateti S, Zhang C, Du A, Periasamy S, Chen YI. Superb storage and energy saving separation of hydrocarbon gases in boron nitride nanosheets via a mechanochemical process. Mater Today. 2022;57:26-34.

[173]

Sure J, Sri Maha Vishnu D, Schwandt C. Single-step electrochemical synthesis of nano-crystalline CoCrFeNi high-entropy alloy powder. Electrochem Commun. 2022;143:107392.

[174]

Li J, Ren G, Chen J, et al. Facilitating complex thin film deposition by using magnetron sputtering: a review. JOM. 2022;74(8):3069-3081.

[175]

Yan X, Li J, Zhang W, Zhang Y. A brief review of high-entropy films. Mater Chem Phys. 2018;210:12-19.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (7132KB)

640

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/