Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction

Mingwei Wang , Zhiyi Hu , Jieheng Lv , Zhiwen Yin , Zhewei Xu , Jingfeng Liu , Shihao Feng , Xiaoqian Wang , Jiazhen He , Sicheng Luo , Dafu Zhao , Hang Li , Xuemin Luo , Qi Liu , Damin Liu , Baolian Su , Dongyuan Zhao , Yong Liu

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 907 -918.

PDF (3238KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 907 -918. DOI: 10.1002/idm2.12212
SHORT COMMUNICATION

Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction

Author information +
History +
PDF (3238KB)

Abstract

Compositions and morphologies of Pt-based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one-dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+-Pt reduction reaction and Pd-Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state-of-the-art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.

Keywords

dendritic hollow heterostructures / electrocatalysis / one-dimensional nanowires / oxygen reduction / proton exchange membrane fuel cells

Cite this article

Download citation ▾
Mingwei Wang, Zhiyi Hu, Jieheng Lv, Zhiwen Yin, Zhewei Xu, Jingfeng Liu, Shihao Feng, Xiaoqian Wang, Jiazhen He, Sicheng Luo, Dafu Zhao, Hang Li, Xuemin Luo, Qi Liu, Damin Liu, Baolian Su, Dongyuan Zhao, Yong Liu. Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction. Interdisciplinary Materials, 2024, 3(6): 907-918 DOI:10.1002/idm2.12212

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang C-L, Wang L-N. Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science. 2021;374:459-464.

[2]

Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal. 2019;2:578-589.

[3]

Sun Y, Polani S, Luo F, Ott S, Strasser P, Dionigi F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat Commun. 2021;12:5984.

[4]

Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(65321):eaad4998.

[5]

Peng Y, Choi J-Y. Fürstenhaupt T, Bai K, Zhang Y, Banham D. New approach for rapidly determining Pt accessibility of Pt/C fuel cell catalysts. J Mater Chem A. 2021;9:13471-13476.

[6]

Lou Y, Li C, Gao X, et al. Porous pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped te nanotubes. ACS Appl Mater Interfaces. 2016;8:16147-16153.

[7]

Bu L, Guo S, Zhang X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun. 2016;7:11850.

[8]

Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv Mater. 2016;28:10117-10141.

[9]

Liu M, Xu Y, Liu S, et al. Phosphorus-modified ruthenium-tellurium dendritic nanotubes outperform platinum for alkaline hydrogen evolution. J Mater Chem A. 2021;9:5026-5032.

[10]

Hao Y, Yang Y, Hong L, Yuan J, Niu L, Gui Y. Facile preparation of ultralong dendritic PtIrTe nanotubes and their high electrocatalytic activity on methanol oxidation. ACS Appl Mater Interfaces. 2014;6:21986-21994.

[11]

Zhang H, Jin M, Liu H, et al. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano. 2011;5:8212-8222.

[12]

Hong JW, Kang SW, Choi B-S. Kim D, Lee SB, Han SW. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano. 2012;6:2410-2419.

[13]

Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J Am Chem Soc. 2009;131:4602-4603.

[14]

Wang G-H, Chen K, Engelhardt J, et al. Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis. Chem Mater. 2018;30:2483-2487.

[15]

Gao Z, Ye H, Wang Q, et al. Template regeneration in galvanic replacement: a route to highly diverse hollow nanostructures. ACS Nano. 2020;14:791-801.

[16]

Ghosh S, Mondal S, Retna Raj C. Carbon nanotube-supported dendritic Pt-on-Pd nanostructures: growth mechanism and electrocatalytic activity towards oxygen reduction reaction. J Mater Chem A. 2014;2:2233-2239.

[17]

Chen Y, Niu H-J. Feng Y-G, et al. Three-dimensional hierarchical urchin-like PdCuPt nanoassembles with zigzag branches: a highly efficient and durable electrocatalyst for formic acid oxidation reaction. Appl Surf Sci. 2020;510:145480.

[18]

Crockett JR, Wang M, Doebler JE, Pawale T, Li X, Bao Y. Impact on the formation and catalytic property of Pt-based nanocatalysts by galvanic reaction with Co-reduction agents. Chem Mater. 2022;34:9282-9293.

[19]

Wang L, Nemoto Y, Yamauchi Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc. 2011;133:9674-9677.

[20]

Zhao F, Zheng L, Yuan Q, et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv Mater. 2021;33:2103383.

[21]

Xu Y, Wu D, Deng P, et al. Au decorated Pd nanowires for methane oxidation to liquid C1 products. Appl Catal B. 2022;308:121223.

[22]

Jin H, Wei X, Zhao L, et al. Modulating the alloying mode in the doping-induced synthesis of Au-Pd nanowires. Nano Res. 2023;15:2488-2515.

[23]

Yang L, Li G, Chang J, et al. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: coefficient of lattice strain and electrochemical surface area. Appl Catal B. 2020;260:118200.

[24]

Zhang R-L, Duan J-J. Mei L-P, Feng JJ, Yuan PX, Wang AJ. Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction. J Colloid Interface Sci. 2020;580:99-107.

[25]

Liu R, Zhao H, Zhao X, et al. Defect sites in ultrathin pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ Sci Technol. 2018;52:9992-10002.

[26]

Li X, Han X, Yang Z, et al. Lattice-distorted Pt wrinkled nanoparticles for highly effective hydrogen electrocatalysis. Nano Res. 2024;17:3819-3826.

[27]

Hu Y, Zhu M, Luo X, et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew Chem Int Ed. 2021;60:6533-6538.

[28]

Denisov N, Qin S, Will J, et al. Light-induced agglomeration of single-atom platinum in photocatalysis. Adv Mater. 2023;35:e2206569.

[29]

Zhang Y, Zhao L, Walton J, Liu Z, Tang Z. Facile fabrication of PtPd alloyed worm-like nanoparticles for electrocatalytic reduction of oxygen. Int J Hydrogen Energy. 2017;42:17112-17121.

[30]

Lopes T, Antolini E, Gonzalez E. Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int J Hydrogen Energy. 2008;33:5563-5570.

[31]

Liu C-H, Porter S, Chen J, et al. Enhanced low temperature performance of bimetallic Pd/Pt/SiO2(core) @Zr(shell) diesel oxidation catalysts. Appl Catal B. 2023;327:122436.

[32]

Ando F, Gunji T, Tanabe T, et al. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions. ACS Catal. 2021;11:9317-9332.

[33]

Wang W, Wang Z, Wang J, Zhong CJ, Liu CJ. Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Adv Sci. 2017;4:1600486.

[34]

Liu W, Rodriguez P, Borchardt L, et al. Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed. 2013;52:9849-9852.

[35]

Park J, Wang H, Vara M, Xia Y, et al. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem. 2016;9:2855-2861.

[36]

Zhang H, Jin M, Wang J, et al. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc. 2011;133:6078-6089.

[37]

Jebaslinhepzybai BT, Prabu N, Sasidharan M. Facile galvanic replacement method for porous Pd@Pt nanoparticles as an efficient HER electrocatalyst. Int J Hydrogen Energy. 2020;45:11127-11137.

[38]

Cho EC, Camargo PHC, Xia Y. Synthesis and characterization of noble-metal nanostructures containing gold nanorods in the center. Adv Mater. 2010;22:744-748.

[39]

Maghsodi A, Milani Hoseini MR, Dehghani Mobarakeh M, et al. Exploration of bimetallic Pt-Pd/C nanoparticles as an electrocatalyst for oxygen reduction reaction. Appl Surf Sci. 2011;257:6353-6357.

[40]

Feng Y, Shao Q, Lv F, et al. Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv Sci. 2020;7:1800178.

[41]

Tao L, Yu D, Zhou J, Lu X, Yang Y, Gao F. Ultrathin wall (1 nm) and superlong Pt nanotubes with enhanced oxygen reduction reaction performance. Small. 2018;14:e1704503.

[42]

Lim B, Jiang M, Camargo PHC, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science. 2009;324:1302-1305.

[43]

Jin H, Xu Z, Hu Z-Y. et al. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat Commun. 2023;14:1518.

[44]

Xu F, Cai S, Lin B, Yang L, Le H, Mu S. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small. 2022;18:2107387.

[45]

Nie Y, Sun Y, Song B, et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew Chem Int Ed. 2024;63:e202317987.

[46]

An Z, Li H, Zhang X, et al. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022;12:3302-3308.

[47]

Zhang J, Yuan Y, Gao L, Zeng G, Li M, Huang H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv Mater. 2021;33:2006494.

[48]

Xu H, Shang H, Wang C, Du Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater. 2020;30:2000793.

[49]

Liu Z, Zhao Z, Peng B, Duan X, Huang Y. Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts. J Am Chem Soc. 2020;142:17812-17827.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3238KB)

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/