Biomolecule-responsive polymers and their bio-applications

Yuting Xiong , Minmin Li , Guangyan Qing

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 865 -896.

PDF (8840KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 865 -896. DOI: 10.1002/idm2.12210
REVIEW

Biomolecule-responsive polymers and their bio-applications

Author information +
History +
PDF (8840KB)

Abstract

Precise recognition and specific interactions between biomolecules are key prerequisites for ensuring the performance of all actives within living organisms. The convergence of biomolecular recognition systems into synthetic materials could endow the materials with high specificity and biological sensitivity; this, in turn, enables precise drug release, monitoring or detection of important biomolecules, and cell manipulation through targeted capture or release of specific biomolecules. Meanwhile, from the perspective of materials science, the application of conventional polymers in practical biological systems poses several challenges, such as low responsiveness and sensitivity, inadequate targetability, insufficient anti-interference capacities, and unsatisfactory biocompatibility. These problems could be partly attributed to the polymers' weak discrimination abilities toward target biomolecules in the presence of interfering substances with high abundance. In particular, the proposition of “precision medicine” project raises higher demands for the design of biomaterials in terms of their precision and targetability. Therefore, there is an urgent demand for the development of new-generation biomaterials with precise recognition and sensitive responsiveness comparable to biomacromolecules. This promotes a new research direction of biomolecule-responsive polymers and their diverse applications. This review focuses on the origin and construction of biomolecule-responsive polymers, as well as their attractive applications in drug delivery systems, bio-detection, bio-sensing, separation, and enrichment, as well as regulating cell adhesion.

Keywords

biomolecules / bio-sensing / drug delivery / enrichment / smart polymers

Cite this article

Download citation ▾
Yuting Xiong, Minmin Li, Guangyan Qing. Biomolecule-responsive polymers and their bio-applications. Interdisciplinary Materials, 2024, 3(6): 865-896 DOI:10.1002/idm2.12210

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101-113.

[2]

Zhai L. Stimuli-responsive polymer films. Chem Soc Rev. 2013;42(17):7148-7160.

[3]

Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8(1):127-143.

[4]

Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-795.

[5]

Singer DS, Jacks T, Jaffee E. A U.S. “cancer Moonshot”to accelerate cancer research. Science. 2016;353(6304):1105-1106.

[6]

Wang H, Xiong Y, Qing G, Sun T. Biomolecular responsive polymer materials. Prog Chem. 2017;29(4):348-358.

[7]

Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed. 2018;13:2921-2942.

[8]

Yang M, Zhang Y, Mou F, et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci Adv. 2023;9(48):eadk7251.

[9]

Hu L, Zhang Q, Li X, Serpe MJ. Stimuli-responsive polymers for sensing and actuation. Mater Horizons. 2019;6(9):1774-1793.

[10]

Tan S, Saito K, Hearn MT. Stimuli-responsive polymeric materials for separation of biomolecules. Curr Opin Biotechnol. 2018;53:209-223.

[11]

Qing G, Lu Q, Xiong Y, et al. New opportunities and challenges of smart polymers in post-translational modification proteomics. Adv Mater. 2017;29(20):1604670.

[12]

Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive synthetic polymers. Adv Mater. 2022;34(2):2105063.

[13]

Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat Mater. 2015;14(2):143-159.

[14]

Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: physical forms and bioengineering applications. Prog Polym Sci. 2007;32(10):1205-1237.

[15]

Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2016;2(1):16075.

[16]

Li X, Zhou J, Liu Z, et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679-5688.

[17]

Rzaev ZMO, Dinçer S, Pişkin E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci. 2007;32(5):534-595.

[18]

Dalei G, Das S. Polyacrylic acid-based drug delivery systems: a comprehensive review on the state-of-art. J Drug Delivery Sci Technol. 2022;78:103988.

[19]

Zhang H, Tian Y, Jiang L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today. 2016;11(1):61-81.

[20]

Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev. 2011;40(5):2385-2401.

[21]

Lu S, Shen J, Fan C, Li Q, Yang X. DNA assembly-based stimuli-responsive systems. Adv Sci. 2021;8(13):2100328.

[22]

Wilson WD. Analyzing biomolecular interactions. Science. 2002;295(5562):2103-2105.

[23]

Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol. 2011;6(4):203-215.

[24]

Mohammed JS, Murphy WL. Bioinspired design of dynamic materials. Adv Mater. 2009;21(23):2361-2374.

[25]

Chang B, Zhang M, Qing G, Sun T. Dynamic biointerfaces: from recognition to function. Small. 2015;11(9-10):1097-1112.

[26]

Sun T, Qing G, Su B, Jiang L. Functional biointerface materials inspired from nature. Chem Soc Rev. 2011;40(5):2909-2921.

[27]

Wilson AN, Guiseppi-Elie A. Bioresponsive hydrogels. Adv Healthc Mater. 2013;2(4):520-532.

[28]

Li D, Xu L, Wang J, Gautrot JE. Responsive polymer brush design and emerging applications for nanotheranostics. Adv Healthc Mater. 2021;10(5):2000953.

[29]

Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. Mater Sci Eng C. 2014;45:600-608.

[30]

Xue L, Thatte AS, Mai D, et al. Responsive biomaterials: optimizing control of cancer immunotherapy. Nat Rev Mater. 2024;9(2):100-118.

[31]

Qing G, Sun T. The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Mater. 2012;4(1):e4.

[32]

Yi Y, An H-W. Wang H. Intelligent biomaterialomics: molecular design, manufacturing, and biomedical applications. Adv Mater. 2023;36:2305099.

[33]

Li P, Liu Z. Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chem Soc Rev. 2024;53(4):1870-1891.

[34]

Mohanty AR, Ravikumar A, Peppas NA. Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications. Regen Biomater. 2022;9: rbaC056.

[35]

Ji S, Xiong Y, Lu W, et al. Camp sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer. Chem Commun. 2020;56(23):3425-3428.

[36]

Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic evolution of ligands by exponential enrichment technologies and aptamer-based applications: recent progress and challenges in precision medicine of infectious diseases. Front Bioeng Biotechnol. 2021;9:704077.

[37]

Zhang X, Zhang X, Gao H, Qing G. Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics. 2022;12(5):2041-2062.

[38]

António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev. 2019;48(13):3513-3536.

[39]

Kugimiya A, Takei H. Preparation of molecularly imprinted polymers with thiourea group for phosphate. Anal Chim Acta. 2006;564(2):179-183.

[40]

Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology. 2018;16(1):74.

[41]

Zhang H-Y, Zhang Y, Zhang Y, Jiang ZP, Cui YL, Wang QS. ROS-responsive thioketal-linked alginate/chitosan carriers for irritable bowel syndrome with diarrhea therapy. Int J Biiol Macromol. 2022;209:70-82.

[42]

Xiong Y, Li M, Liu Y, Liang X, Qing G. Enrichment driven glycoproteomics: new materials, new methods, and beyond. TrAC Trends Anal Chem. 2023;168:117290.

[43]

Konozy EHE, Osman MEM, Dirar AI, Ghartey-Kwansah G. Plant lectins: a new antimicrobial frontier. Biomed Pharmacother. 2022;155:113735.

[44]

Sterner E, Flanagan N, Gildersleeve JC. Perspectives on anti-glycan antibodies gleaned from development of a community resource database. ACS Chem Biol. 2016;11(7):1773-1783.

[45]

Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci. 2016;23:8.

[46]

Ding S, Shi G, Zhu A. Stimuli-responsive polymers for interface engineering toward enhanced electrochemical analysis of neurochemicals. Chem Commun. 2022;58(95):13171-13187.

[47]

Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B. 2020;8(15):2951-2973.

[48]

Wang X, Qing G, Jiang L, Fuchs H, Sun T. Smart surface of water-induced superhydrophobicity. Chem Commun. 2009;19:2658-2660.

[49]

Lv Z, Li X, Chen Z, et al. Surface stiffness-a parameter for sensing the chirality of saccharides. ACS Appl Mater Interfaces. 2015;7(49):27223-27233.

[50]

Wang J, Yu J, Zhang Y, et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci Adv. 2019;5(7):eaaw4357.

[51]

Sun T, Qing G. Biomimetic smart interface materials for biological applications. Adv Mater. 2011;23(12): H57-H77.

[52]

Qing G, Sun T. Chirality-triggered wettability switching on a smart polymer surface. Adv Mater. 2011;23(14):1615-1620.

[53]

Qing G, Sun T. Chirality-driven wettability switching and mass transfer. Angew Chem Int Ed. 2014;53(4):930-932.

[54]

Li M, Qing G, Xiong Y, Lai Y, Sun T. CH-πinteraction driven macroscopic property transition on smart polymer surface. Sci Rep. 2015;5(1):15742.

[55]

Shundo A, Hori K, Ikeda T, Kimizuka N, Tanaka K. Design of a dynamic polymer interface for chiral discrimination. J Am Chem Soc. 2013;135(28):10282-10285.

[56]

Qing G, Wang X, Jiang L, Fuchs H, Sun T. Saccharide-sensitive wettability switching on a smart polymer surface. Soft Matter. 2009;5(14):2759-2765.

[57]

Zhang M, Qing G, Xiong C, Cui R, Pang DW, Sun T. Dual-responsive gold nanoparticles for colorimetric recognition and testing of carbohydrates with a dispersion-dominated chromogenic process. Adv Mater. 2013;25(5):749-754.

[58]

Wang S, Liu K, Yao X, Jiang L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev. 2015;115(16):8230-8293.

[59]

Qing G, Wang X, Fuchs H, Sun T. Nucleotide-responsive wettability on a smart polymer surface. J Am Chem Soc. 2009;131(24):8370-8371.

[60]

Aili D, Stevens MM. Bioresponsive peptide-inorganic hybrid nanomaterials. Chem Soc Rev. 2010;39(9):3358-3370.

[61]

Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun. 2014;50(58):7743-7765.

[62]

Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Controlled Release. 2011;152(1):2-12.

[63]

Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem. 2014;5(5):1503-1518.

[64]

Dong X, Zhang H, Duan P, et al. An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment. Sci Adv. 2023;9(51):eadi1078.

[65]

Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217(7):2291-2298.

[66]

Yang W, Xia Y, Zou Y, Meng F, Zhang J, Zhong Z. Bioresponsive chimaeric nanopolymersomes enable targeted and efficacious protein therapy for human lung cancers in vivo. Chem Mater. 2017;29(20):8757-8765.

[67]

Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+human breast tumor xenografts. J Controlled Release. 2015;205:144-154.

[68]

Li Y-L, Zhu L, Liu Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed. 2009;48(52):9914-9918.

[69]

Shi C, Guo X, Qu Q, Tang Z, Wang Y, Zhou S. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials. 2014;35(30):8711-8722.

[70]

Xu X, Saw PE, Tao W, et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater. 2017;29(33):1700141.

[71]

Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun. 2019;10(1):1704.

[72]

Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Controlled Release. 2015;210:125-133.

[73]

He X, Ding M, Li J, Tan H, Fu Q, Li L. Biodegradable multiblock polyurethane micelles with tunable reduction-sensitivity for on-demand intracellular drug delivery. RSC Adv. 2014;4(47):24736-24746.

[74]

Jin R, Liu Z, Liu T, Yuan P, Bai Y, Chen X. Redox-responsive micelles integrating catalytic nanomedicine and selective chemotherapy for effective tumor treatment. Chin Chem Lett. 2021;32(10):3076-3082.

[75]

Zhao S, Ma L, Cao C, Yu Q, Chen L, Liu J. Curcumin-loaded redox response of self-assembled micelles for enhanced antitumor and anti-inflammation efficacy. Int J Nanomedicine. 2017;12:2489-2504.

[76]

Jia X, He J, Shen L, et al. Gradient redox-responsive and two-stage rocket-mimetic drug delivery system for improved tumor accumulation and safe chemotherapy. Nano Lett. 2019;19(12):8690-8700.

[77]

Liu X, Li Y, Wang K, et al. GSH-responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for cancer therapy. Nano Lett. 2021;21(18):7862-7869.

[78]

Fang J, Seki T, Maeda H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009;61(4):290-302.

[79]

Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 2008;18(4):165-173.

[80]

Zhang M, Song C-C. Du F-S, Li Z-C. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery. ACS Appl Mater Interfaces. 2017;9(31):25905-25914.

[81]

Deng Z, Qian Y, Yu Y, et al. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J Am Chem Soc. 2016;138(33):10452-10466.

[82]

Tan G, Wang Y, He Y, Miao G, Li Y, Wang X. Bioinspired poly(cation-π) micelles drug delivery platform for improving chemotherapy efficacy. J Controlled Release. 2022;349:486-501.

[83]

Luo C, Sun J, Liu D, et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016;16(9):5401-5408.

[84]

Hong T, Shen X, Syeda MZ, et al. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Res. 2023;16(2):2660-2671.

[85]

Cheng Q, Wang W, Dong X, et al. An adaptable drug delivery system facilitates peripheral nerve repair by remodeling the microenvironment. Biomacromolecules. 2024;25(3):1509-1526.

[86]

Yu J, Qian C, Zhang Y, et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett. 2017;17(2):733-739.

[87]

Tai W, Mo R, Di J, et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules. 2014;15(10):3495-3502.

[88]

Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci. 2015;112(27):8260-8265.

[89]

Yu J, Wang J, Zhang Y, et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng. 2020;4(5):499-506.

[90]

Matsumoto A, Tanaka M, Matsumoto H, et al. Synthetic “smart gel”provides glucose-responsive insulin delivery in diabetic mice. Sci Adv. 2017;3(11):eaaq0723.

[91]

Lee J, Ko JH, Mansfield KM, Nauka PC, Bat E, Maynard HD. Glucose-responsive trehalose hydrogel for insulin stabilization and delivery. Macromol Biosci. 2018;18(5):1700372.

[92]

Wang J, Wang Z, Chen G, et al. Injectable biodegradable polymeric complex for glucose-responsive insulin delivery. ACS Nano. 2021;15(3):4294-4304.

[93]

Volpatti LR, Matranga MA, Cortinas AB, et al. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano. 2020;14(1):488-497.

[94]

Xiao Y, Hu Y, Du J. Controlling blood sugar levels with a glycopolymersome. Mater Horizons. 2019;6(10):2047-2055.

[95]

Chen S, Matsumoto H, Moro-oka Y, et al. Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Adv Funct Mater. 2019;29(7):1807369.

[96]

Wang J, Ye Y, Yu J, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano. 2018;12(3):2466-2473.

[97]

Hu J, Liu S. Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules. 2010;43(20):8315-8330.

[98]

Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci. 2006;103(5):1190-1193.

[99]

Zhang F, Wang D, Qin H, Feng L, Liang X, Qing G. Chemoselectivity of pristine cellulose nanocrystal films driven by carbohydrate-carbohydrate interactions. ACS Appl Mater Interfaces. 2019;11(14):13114-13122.

[100]

Ding S, Cao S, Liu Y, Lian Y, Zhu A, Shi G. Rational design of a stimuli-responsive polymer electrode interface coupled with in vivo microdialysis for measurement of sialic acid in live mouse brain in alzheimer’s disease. ACS Sens. 2017;2(3):394-400.

[101]

Lin Z-T, Gu J, Li C-H. et al. A nanoparticle-decorated biomolecule-responsive polymer enables robust signaling cascade for biosensing. Adv Mater. 2017;29(31):1702090.

[102]

Noh K-G, Park S-Y. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv Funct Mater. 2018;28(22):1707562.

[103]

Cai Z, Luck LA, Punihaole D, Madura JD, Asher SA. Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem Sci. 2016;7(7):4557-4562.

[104]

Ding S, Cao S, Zhu A, Shi G. Wettability switching of electrode for signal amplification: conversion of conformational change of stimuli-responsive polymer into enhanced electrochemical chiral analysis. Anal Chem. 2016;88(24):12219-12226.

[105]

Li Y, Xiong Y, Wang D, et al. Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Mater. 2019;11(1):46.

[106]

Ali M, Nguyen QH, Neumann R, Ensinger W. ATP-modulated ionic transport through synthetic nanochannels. Chem Commun. 2010;46(36):6690-6692.

[107]

Xu Y, Sui X, Guan S, Zhai J, Gao L. Olfactory sensory neuron-mimetic CO2 activated nanofluidic diode with fast response rate. Adv Mater. 2015;27(11):1851-1855.

[108]

Li M, Xiong Y, Wang D, et al. Biomimetic nanochannels for the discrimination of sialylated glycans via a tug-of-war between glycan binding and polymer shrinkage. Chem Sci. 2020;11(3):748-756.

[109]

Li M, Xiong Y, Lu W, et al. Functional nanochannels for sensing tyrosine phosphorylation. J Am Chem Soc. 2020;142(38):16324-16333.

[110]

Yang M, Ma C, Ding S, Zhu Y, Shi G, Zhu A. Rational design of stimuli-responsive polymers modified nanopores for selective and sensitive determination of salivary glucose. Anal Chem. 2019;91(21):14029-14035.

[111]

Lu Q, Tang Q, Chen Z, Zhao S, Qing G, Sun T. Developing an inositol-phosphate-actuated nanochannel system by mimicking biological calcium ion channels. ACS Appl Mater Interfaces. 2017;9(38):32554-32564.

[112]

Chen Z, Sun T, Qing G. cAMP -modulated biomimetic ionic nanochannels based on a smart polymer. J Mater Chem B. 2019;7(23):3710-3715.

[113]

Lu W, Li M, Xiong Y, et al. Bioinspired sialic acid regulated ion nanochannel. Adv Mater Interfaces. 2022;9(15):2200186.

[114]

Xiao J, Lu W, Zhang Y, et al. Sialylated glycan-modulated biomimetic ion nanochannels driven by carbohydrate-carbohydrate interactions. NPG Asia Mater. 2022;14(1):52.

[115]

Xiong Y, Li M, Lu W, et al. Discerning tyrosine phosphorylation from multiple phosphorylations using a nanofluidic logic platform. Anal Chem. 2021;93(48):16113-16122.

[116]

Liu Q, Ding S, Gao R, Shi G, Zhu A. A highly selective ATP-responsive biomimetic nanochannel based on smart copolymer. Anal Chim Acta. 2021;1188:339167.

[117]

Li M, Xiong Y, Qing G. Smart bio-separation materials. TrAC Trends Anal Chem. 2020;124:115585.

[118]

Li M, Xiong Y, Qing G. Innovative chemical tools to address analytical challenges of protein phosphorylation and glycosylation. Acc Chem Res. 2023;56(18):2514-2525.

[119]

Li X, Xiong Y, Qing G, et al. Bioinspired saccharide-saccharide interaction and smart polymer for specific enrichment of sialylated glycopeptides. ACS Appl Mater Interfaces. 2016;8(21):13294-13302.

[120]

Xiong Y, Li M, Wang H, Qing G, Sun T. Sialic acid-triggered macroscopic properties switching on a smart polymer surface. Appl Surf Sci. 2018;427:1152-1164.

[121]

Qing G, Lu Q, Li X, et al. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nat Commun. 2017;8(1):461.

[122]

Xiong Y, Jiang G, Li M, et al. Sialic acid-responsive polymeric interface material: from molecular recognition to macroscopic property switching. Sci Rep. 2017;7(1):40913.

[123]

Chen Z, Lv Z, Wang X, Yang H, Qing G, Sun T. A biomimetic design for a sialylated, glycan-specific smart polymer. NPG Asia Mater. 2018;10(3):e472.

[124]

Ding P, Li X, Qing G, Sun T, Liang X. Disaccharide-driven transition of macroscopic properties: from molecular recognition to glycopeptide enrichment. Chem Commun. 2015;51(89):16111-16114.

[125]

Qing G, Li X, Xiong P, et al. Dipeptide-based carbohydrate receptors and polymers for glycopeptide enrichment and glycan discrimination. ACS Appl Mater Interfaces. 2016;8(34):22084-22092.

[126]

Zhang B, Yu RZ, Yu YH, et al. Lectin inspired polymers based on the dipeptide Ser-Asp for glycopeptide enrichment. Analyst. 2018;143(21):5090-5093.

[127]

Zheng X, Zhang F, Zhao Y, et al. Enrichment of IgG and HRP glycoprotein by dipeptide-based polymeric material. Talanta. 2022;241:123223.

[128]

Lu Q, Chen C, Xiong Y, et al. High-efficiency phosphopeptide and glycopeptide simultaneous enrichment by hydrogen bond-based bifunctional smart polymer. Anal Chem. 2020;92(9):6269-6277.

[129]

Zhao Y, Xu W, Zheng H, Jia Q. Light, pH, and temperature triple-responsive magnetic composites for highly efficient phosphopeptide enrichment. Anal Chem. 2023;95(23):9043-9051.

[130]

Luo B, Yu L, Li Z, et al. Complementary multiple hydrogen-bond-based magnetic composite microspheres for high coverage and efficient phosphopeptide enrichment in bio-samples. J Mater Chem B. 2020;8(36):8414-8421.

[131]

Shi Z, Zhang X, Yang X, et al. Specific clearance of lipopolysaccharide from blood based on peptide bottlebrush polymer for sepsis therapy. Adv Mater. 2023;35(33):2302560.

[132]

Dang Q, Li C-G. Jin X-X, Zhao Y-J. Wang X. Heparin as a molecular spacer immobilized on microspheres to improve blood compatibility in hemoperfusion. Carbohydr Polymers. 2019;205:89-97.

[133]

Chen J, Shi Z, Yang X, et al. Broad-spectrum clearance of lipopolysaccharides from blood based on a hemocompatible dihistidine polymer. ACS Appl Mater Interfaces. 2023;15(27):32251-32261.

[134]

Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic electrochemical control of cell capture-and-release based on redox-controlled host-guest interactions. Anal Chem. 2016;88(20):9996-10001.

[135]

Ma Y, Tian X, Liu L, Pan J, Pan G. Dynamic synthetic biointerfaces: from reversible chemical interactions to tunable biological effects. Acc Chem Res. 2019;52(6):1611-1622.

[136]

Yao F, Hu H, Xu S, et al. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays. ACS Appl Mater Interfaces. 2015;7(7):3882-3887.

[137]

Liu H, Li Y, Sun K, et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc. 2013;135(20):7603-7609.

[138]

Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G. A versatile dynamic mussel-inspired biointerface: from specific cell behavior modulation to selective cell isolation. Angew Chem Int Ed. 2018;57(26):7878-7882.

[139]

Lu K, Qu Y, Lin Y, et al. A photothermal nanoplatform with sugar-triggered cleaning ability for high-efficiency intracellular delivery. ACS Appl Mater Interfaces. 2022;14(2):2618-2628.

[140]

Zhan W, Qu Y, Wei T, et al. Sweet switch: sugar-responsive bioactive surfaces based on dynamic covalent bonding. ACS Appl Mater Interfaces. 2018;10(13):10647-10655.

[141]

Guo B, Pan G, Guo Q, et al. Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chem Commun. 2015;51(4):644-647.

[142]

Qu Y, Zheng Y, Yu L, et al. A universal platform for high-efficiency “engineering”living cells: integration of cell capture, intracellular delivery of biomolecules, and cell harvesting functions. Adv Funct Mater. 2020;30(3):1906362.

[143]

Zhou Y, Zheng Y, Wei T, et al. Multistimulus responsive biointerfaces with switchable bioadhesion and surface functions. ACS Appl Mater Interfaces. 2020;12(5):5447-5455.

[144]

Lu K, Lin Y, Zhang H, et al. Enhanced intracellular delivery and cell harvest using a candle soot-based photothermal platform with dual-stimulus responsiveness. ACS Appl Mater Interfaces. 2023;15(34):40153-40162.

[145]

Robertus J, Browne WR, Feringa BL. Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev. 2010;39(1):354-378.

[146]

Pan G, Guo B, Ma Y, et al. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J Am Chem Soc. 2014;136(17):6203-6206.

[147]

Pan G, Shinde S, Yeung SY, et al. An epitope-imprinted biointerface with dynamic bioactivity for modulating cell-biomaterial interactions. Angew Chem Int Ed. 2017;56(50):15959-15963.

[148]

He W, Bai J, Chen X, et al. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics. Proc Natl Acad Sci. 2022;119(8):e2117221119.

[149]

Li Y, He Z, A S, et al. Artificial intelligence (AI)-aided structure optimization for enhanced gene delivery: the effect of the polymer component distribution (PCD). ACS Appl Mater Interfaces. 2023;15(30):36667-36675.

[150]

Xie S. Perspectives on development of biomedical polymer materials in artificial intelligence age. J Biomater Appl. 2023;37(8):1355-1375.

[151]

Abd-El-Aziz AS, Antonietti M, Barner-Kowollik C, et al. The next 100 years of polymer science. Macromol Chem Phys. 2020;221(16):2000216.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (8840KB)

309

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/