Ductile inorganic semiconductors for deformable electronics

Xiaocui Li , Fu-Rong Chen , Yang Lu

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 835 -846.

PDF (3908KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 835 -846. DOI: 10.1002/idm2.12209
REVIEW

Ductile inorganic semiconductors for deformable electronics

Author information +
History +
PDF (3908KB)

Abstract

Traditionally, it is relatively easy to process metal materials and polymers (plastics), while ceramic and inorganic semiconductor materials are hard to process, due to their intrinsic brittleness caused by directional covalent bonds or the strong electrostatic interactions among ionic species. The brittleness of semiconductor materials, which may degrade their functional performance and cause catastrophic failures, has excluded them from many application scenarios. The exploration on room-temperature ductile semiconductors has been a long pursuit of mankind for fabricating deformable and more robust electronics. Guided by this goal, researchers have already found that the plasticity of brittle semiconductors can be enhanced by size effects, which include fewer pre-existing micro-cracks and increased dislocation activity, charge characteristics, and defect density. It has also been explored that a few quasi-layered/van der Waals semiconductors can have exceptional roomtemperature metal-like plasticity, enabled by the relatively weak interlayer bonding and easy interlayer gliding. More recently, intrinsic exceptional plasticity has been found in a group of all-inorganic perovskites (CsPbX3, X = Cl, Br and I), which can be morphed into distinct morphologies through multislip at room temperature, without affecting their functional properties and bandgap energy. Based on the above research status, in this review, we will discuss and present the relevant works on the plasticity found in inorganic semiconductors and the proposed deformation mechanisms. The potential applications and bottlenecks of plastic semiconductors in manufacturing nextgeneration deformable electronic/optoelectronic devices and energy systems will also be discussed.

Keywords

deformable electronics / deformation mechanisms / ductility / inorganic semiconductors

Cite this article

Download citation ▾
Xiaocui Li, Fu-Rong Chen, Yang Lu. Ductile inorganic semiconductors for deformable electronics. Interdisciplinary Materials, 2024, 3(6): 835-846 DOI:10.1002/idm2.12209

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meyers MA, Chawla KK. Mechanical Behavior of Materials. Cambridge University Press;2008.

[2]

Callister WD, Rethwisch DG. Materials Science and Engineering. Vol 5. John Wiley &Sons;2011.

[3]

Kim BJ, Kim DH, Lee Y-Y. et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ Sci. 2015;8(3):916-921.

[4]

Nie A, Bu Y, Huang J, et al. Direct observation of room-temperature dislocation plasticity in diamond. Matter. 2020;2(5):1222-1232.

[5]

Chen M, Pethö L, Sologubenko AS, et al. Achieving micron-scale plasticity and theoretical strength in silicon. Nat Commun. 2020;11(1):2681.

[6]

Fan S, Li X, Fan R, Lu Y. Size-dependent fracture behavior of GaN pillars under room temperature compression. Nanoscale. 2020;12(45):23241-23247.

[7]

Zhu M, Zhou J, He Z, et al. Ductile amorphous boron nitride microribbons. Mater Horizons. 2023;10(11):4914-4921.

[8]

Zhang J, Liu G, Cui W, et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. Science. 2022;378(6618):371-376.

[9]

Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and Fracture Mechanics of Engineering Materials. John Wiley &Sons;2020.

[10]

Lei Y, Chen Y, Zhang R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature. 2020;583(7818):790-795.

[11]

Seitz F. The plasticity of silicon and germanium. Phys Rev. 1952;88(4):722-724.

[12]

Hirsch PB, Roberts SG. The brittle-ductile transition in silicon. Philos Mag A. 1991;64(1):55-80.

[13]

Östlund F, Rzepiejewska-Malyska K, Leifer K, et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater. 2009;19(15):2439-2444.

[14]

Gerberich WW, Stauffer DD, Beaber AR, Tymiak NI. A brittleness transition in silicon due to scale. J Mater Res. 2012;27(3):552-561.

[15]

Fujikane M, Nagao S, Chrobak D, Yokogawa T, Nowak R. Room-temperature plasticity of a nanosized GaN crystal. Nano Lett. 2021;21(15):6425-6431.

[16]

Zou Y, Spolenak R. Size-dependent plasticity in micron-and submicron-sized ionic crystals. Philos Mag Lett. 2013;93(7):431-438.

[17]

Shin C, Jin HH, Kim WJ, Park JY. Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J Am Ceram Soc. 2012;95(9):2944-2950.

[18]

Demenet J-L, Hong MH, Pirouz P. Plastic behavior of 4H-SiC single crystals deformed at low strain rates. Scr Mater. 2000;43(9):865-870.

[19]

Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56(6):654-724.

[20]

Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53(6):1821-1830.

[21]

Oshima Y, Nakamura A, Matsunaga K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science. 2018;360(6390):772-774.

[22]

Li M, Shen Y, Luo K, et al. Harnessing dislocation motion using an electric field. Nat Mater. 2023;22(8):958-963.

[23]

Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater. 2018;17(5):421-426.

[24]

Wei T-R, Jin M, Wang Y, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science. 2020;369(6503):542-545.

[25]

Wang H, Wu H, Lin W, et al. Orientation-dependent large plasticity of single-crystalline gallium selenide. Cell Rep Phys Sci. 2022;3(4):100816.

[26]

Huang H, Chen H, Gao Z, et al. Room-temperature wide-gap inorganic materials with excellent plasticity. Adv Funct Mater. 2023;33(43):2306042.

[27]

Gao Z, Wei T-R. Deng T, et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat Commun. 2022;13(1):7491.

[28]

Yang KH, Ho NJ, Lu HY. Plastic deformation of <001> single-crystal SrTiO3 by compression at room temperature. J Am Ceram Soc. 2011;94(9):3104-3111.

[29]

Stich S, Ding K, Muhammad QK, et al. Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry. J Am Ceram Soc. 2022;105(2):1318-1329.

[30]

Li Y, Liu X, Zhang P, Han Y, Huang M, Wan C. Theoretical insights into the peierls plasticity in SrTiO3 ceramics via dislocation remodelling. Nat Commun. 2022;13(1):6925.

[31]

Gumbsch P, Taeri-Baghbadrani S, Brunner D, Sigle W, Rühle M. Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys Rev Lett. 2001;87(8):085505.

[32]

Liu Y, Cui X, Niu R, et al. Giant room temperature compression and bending in ferroelectric oxide pillars. Nat Commun. 2022;13(1):335.

[33]

Mathews NG, Saxena AK, Kirchlechner C, Dehm G, Jaya BN. Effect of size and domain orientation on strength of barium titanate. Scr Mater. 2020;182:68-73.

[34]

Li X, Meng Y, Li W, et al. Multislip-enabled morphing of all-inorganic perovskites. Nat Mater. 2023;22(10):1175-1181.

[35]

Meng Y, Lan C, Li F, et al. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano. 2019;13(5):6060-6070.

[36]

Hirel P, Marton P, Mrovec M, Elsässer C. Theoretical investigation of {110} generalized stacking faults and their relation to dislocation behavior in perovskite oxides. Acta Mater. 2010;58(18):6072-6079.

[37]

Li X, Meng Y, Fan R, et al. High elasticity of CsPbBr3 perovskite nanowires for flexible electronics. Nano Res. 2021;14:4033-4037.

[38]

Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science. 2022;377(6608):854-858.

[39]

Zhang J, Hodes G, Jin Z, Liu S. All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew Chem Int Ed. 2019;58(44):15596-15618.

[40]

Deforming brittle materials. Nat Mater. 2023;22(10):1161. https://www.nature.com/articles/S41563-023-01686-y

[41]

Wang Y, Ding J, Fan Z, et al. Tension-compression asymmetry in amorphous silicon. Nat Mater. 2021;20(10):1371-1377.

[42]

Cheng G, Zhang Y, Chang TH, et al. In situ nano-thermomechanical experiment reveals brittle to ductile transition in silicon nanowires. Nano Lett. 2019;19(8):5327-5334.

[43]

Chen M, Sologubenko AS, Wheeler JM. Exploring defect behavior and size effects in micron-scale germanium from cryogenic to elevated temperatures. Matter. 2023;6(6):1903-1927.

[44]

Pugh SF. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Mag J Sci. 1954;45(367):823-843.

[45]

Roknuzzaman M, Ostrikov K, Wang H, Du A, Tesfamichael T. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci Rep. 2017;7(1):14025.

[46]

Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8(4):345-349.

[47]

Gschneidner K, Russell A, Pecharsky A, et al. A family of ductile intermetallic compounds. Nat Mater. 2003;2(9):587-591.

[48]

Queisser HJ, Haller EE. Defects in semiconductors: some fatal, some vital. Science. 1998;281(5379):945-950.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3908KB)

337

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/