Anisotropic thermally conductive films based on two-dimensional nanomaterials

Lei Li , Qunfeng Cheng

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 847 -864.

PDF (4280KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 847 -864. DOI: 10.1002/idm2.12204
REVIEW

Anisotropic thermally conductive films based on two-dimensional nanomaterials

Author information +
History +
PDF (4280KB)

Abstract

The significant advancement of high-power densification and miniaturization in modern electronic devices has attracted increasing attention to effective thermal management. The primary objective of thermal management is to transfer excess heat from electronics to the outside environment through the use of thermal conductive materials. The anisotropic thermally conductive films (TCFs) based on two-dimensional (2D) nanomaterials exhibit outstanding controlled heat transfer capability, which effectively removes hotspots along the in-plane direction and provides thermal insulation along the cross-plane direction. However, a comprehensive review of anisotropic TCFs is rarely reported. Herein, we first discuss the intrinsic anisotropic thermal conductivity of 2D nanomaterials for preparing TCFs. Then, the preparation methods and anisotropic thermal conductivity of TCFs have been summarized and discussed. Furthermore, we conclude with the practical applications of TCFs for anisotropy thermal management. Finally, a conclusion of the challenges and outlook of TCFs is provided to promote their development in future scientific research.

Keywords

anisotropic / film / thermal conductivity / two-dimensional nanomaterials

Cite this article

Download citation ▾
Lei Li, Qunfeng Cheng. Anisotropic thermally conductive films based on two-dimensional nanomaterials. Interdisciplinary Materials, 2024, 3(6): 847-864 DOI:10.1002/idm2.12204

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin X, Wang J, Dai L, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J. 2020;380:122475.

[2]

Chen Q, Ma Z, Wang M, et al. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 2023;16(1):1362-1386.

[3]

Liu Y, Wu K, Lu M, et al. Highly thermal conductivity and flame retardant flexible graphene/MXene paper based on an optimized interface and nacre laminated structure. Composites Part A. 2021;141:106227.

[4]

Li L, Cao Y, Liu X, Wang J, Yang Y, Wang W. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl Mater Interfaces. 2020;12(24):27350-27360.

[5]

Liu Y, Zou W, Zhao N, Xu J. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat Commun. 2023;14(1):5342.

[6]

Xu X, Chen J, Zhou J, Li B. Thermal conductivity of polymers and their nanocomposites. Adv Mater. 2018;30(17):1705544.

[7]

Wang Z, Wu Z, Weng L, et al. A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects. Adv Funct Mater. 2023;33(36):2301549.

[8]

Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater. 2014;24(28):4542-4548.

[9]

Barani Z, Mohammadzadeh A, Geremew A, et al. Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Adv Funct Mater. 2020;30(8):1904008.

[10]

Dai S, Li J, Lu N. Research progress of diamond/copper composites with high thermal conductivity. Diamond Relat Mater. 2020;108:107993.

[11]

Chen J, Huang X, Zhu Y, Jiang P. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater. 2017;27(5):1604754.

[12]

Li X, Feng Y, Chen C, et al. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J Mater Chem A. 2018;6(41):20500-20512.

[13]

Guo Y, Xu G, Yang X, et al. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C. 2018;6(12):3004-3015.

[14]

Cao M, Du C, Guo H, et al. Paving thermally conductive highway by 3D interconnected framework of carbon nanotube and graphene oxide in poly(vinylidene fluoride). Composites Part A. 2018;115:331-340.

[15]

Song N, Jiao D, Cui S, Hou X, Ding P, Shi L. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl Mater Interfaces. 2017;9(3):2924-2932.

[16]

Kim SE, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature. 2021;597(7878):660-665.

[17]

Renteria JD, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater. 2015;25(29):4664-4672.

[18]

Wu Y, Xue Y, Qin S, et al. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl Mater Interfaces. 2017;9(49):43163-43170.

[19]

Yang W, Zhao Z, Wu K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C. 2017;5(15):3748-3756.

[20]

Song J, Chen C, Zhang Y. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Composites Part A. 2018;105:1-8.

[21]

Luo F, Wu K, Shi J, et al. Green reduction of graphene oxide by polydopamine to a construct flexible film: superior flame retardancy and high thermal conductivity. J Mater Chem A. 2017;5(35):18542-18550.

[22]

Zhuang Y, Zheng K, Cao X, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano. 2020;14(9):11733-11742.

[23]

Akbari A, Cunning BV, Joshi SR, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture. Matter. 2020;2(5):1198-1206.

[24]

He X, Zhang K, Wang H, et al. Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon. 2022;199:367-378.

[25]

Chen Q, Ma Z, Wang Z, et al. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv Funct Mater. 2022;32(8):2110782.

[26]

Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92(15):151911.

[27]

Ghosh S, Bao W, Nika DL, et al. Dimensional crossover of thermal transport in few-layer graphene. Nat Mater. 2010;9(7):555-558.

[28]

Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569-581.

[29]

Cai Q, Scullion D, Gan W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv. 2019;5(6):eaav0129.

[30]

Meng W, Huang Y, Fu Y, Wang Z, Zhi C. Polymer composites of boron nitride nanotubes and nanosheets. J Mater Chem C. 2014;2(47):10049-10061.

[31]

Ouyang T, Chen Y, Xie Y, Yang K, Bao Z, Zhong J. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology. 2010;21(24):245701.

[32]

Liu R, Li W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega. 2018;3(3):2609-2617.

[33]

Gholivand H, Fuladi S, Hemmat Z, Salehi-Khojin A, Khalili-Araghi F. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. J Appl Phys. 2019;126(6):065101.

[34]

Jeon SG, Shin H, Jaung YH, Ahn J, Song JY. Thickness-dependent and anisotropic thermal conductivity of black phosphorus nanosheets. Nanoscale. 2018;10(13):5985-5989.

[35]

Luo Z, Maassen J, Deng Y, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun. 2015;6(1):8572.

[36]

Yan R, Simpson JR, Bertolazzi S, et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano. 2014;8(1):986-993.

[37]

Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902-907.

[38]

Wei Z, Yang J, Chen W, Bi K, Li D, Chen Y. Phonon mean free path of graphite along the c-axis. Appl Phys Lett. 2014;104(8):081903.

[39]

Lindsay L, Broido DA. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys Rev B. 2011;84(15):155421.

[40]

Zha X-H, Zhou J, Zhou Y, et al. Promising electron mobility and high thermal conductivity in SC2CT2 (T = F, OH) MXenes. Nanoscale. 2016;8(11):6110-6117.

[41]

Wang Y, Wei X, Cai H, et al. Enhanced thermal transportation across an electrostatic self-assembly of black phosphorene and boron nitride nanosheets in flexible composite films. Nanoscale. 2022;14(27):9743-9753.

[42]

Yao Y, Zeng X, Wang F, Sun R, Xu J, Wong CP. Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide. Chem Mater. 2016;28(4):1049-1057.

[43]

Mani D, Vu MC, Lim C-S. et al. Stretching induced alignment of graphene nanoplatelets in polyurethane films for superior in-plane thermal conductivity and electromagnetic interference shielding. Carbon. 2023;201:568-576.

[44]

Qian X, Zhou J, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat Mater. 2021;20(9):1188-1202.

[45]

Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science. 2004;303(5660):989-990.

[46]

Malekpour H, Balandin AA. Raman-based technique for measuring thermal conductivity of graphene and related materials. J Raman Spectrosc. 2018;49(1):106-120.

[47]

Lu L, Yi W, Zhang DL. 3ωmethod for specific heat and thermal conductivity measurements. Rev Sci Instrum. 2001;72(7):2996-3003.

[48]

Jo I, Pettes MT, Lindsay L, et al. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods. AIP Adv. 2015;5(5):053206.

[49]

Schmidt A, Chiesa M, Chen X, Chen G. An optical pump-probe technique for measuring the thermal conductivity of liquids. Rev Sci Instrum. 2008;79(6):064902.

[50]

Winkler K, Lindner J, Bürsing H, Vöhringer P. Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions. J Chem Phys. 2000;113(11):4674-4682.

[51]

Min S, Blumm J, Lindemann A. A new laser flash system for measurement of the thermophysical properties. Thermochim Acta. 2007;455(1-2):46-49.

[52]

Schwamb T, Burg BR, Schirmer NC, Poulikakos D. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology. 2009;20(40):405704.

[53]

Yan Q, Dai W, Gao J, et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano. 2021;15(4):6489-6498.

[54]

Wu K, Wang J, Liu D, et al. Highly thermoconductive, thermostable, and super-flexibl film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv Mater. 2020;32(8):1906939.

[55]

Song G, Kang R, Guo L, et al. Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New J Chem. 2020;44(17):7186-7193.

[56]

Ran L, Ma X, Qiu L, et al. Liquid metal assisted fabrication of MXene-based films: toward superior electromagnetic interference shielding and thermal management. J Colloid Interface Sci. 2023;652:705-717.

[57]

Kong X, Song G, Chen Y, et al. Mannitol enhanced thermal conductivity and environmental stability of highly aligned MXene composite film. Compos Sci Technol. 2023;241:110141.

[58]

Han G, Zhang D, Kong C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chem Eng J. 2022;437:135482.

[59]

Zhan Y, Zheng X, Nan B, Lu M, Shi J, Wu K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polym J. 2023;186:111847.

[60]

Chen J, Huang X, Sun B, Jiang P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano. 2018;13(1):337-345.

[61]

Xiao G, Li H, Yu Z, Niu H, Yao Y. Highly thermoconductive, strong graphene-base. composite films by eliminating nanosheets wrinkles. Nano Micro Lett. 2024;16(1):17.

[62]

Zhu H, Li Y, Fang Z, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano. 2014;8(4):3606-3613.

[63]

Fu L, Wang T, Yu J, et al. An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets. 2D Mater. 2017;4(2):025047.

[64]

Sun T, Cao W, Zhao K, et al. Bio-inspired robust and highly thermal conductive BNNS/PBO nanofiber composite films with excellent thermal stability, wear resistance, and adjustable photothermal properties. Chem Eng J. 2023;474:145916.

[65]

Jiao E, Wu K, Liu Y, et al. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Composites Part A. 2021;146:106417.

[66]

Jiao E, Sun Z, Zhang H, et al. Bidirectionally enhanced thermally conductive and mechanical properties MXene nanocomposite film via covalently bridged functionalized single-walled carbon nanotube. Appl Surf Sci. 2023;614:156270.

[67]

Ruan K, Gu J. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules. 2022;55(10):4134-4145.

[68]

Ma M, Chu Q, Lin H, et al. Highly anisotropic thermal conductivity and electrical insulation of nanofibrillated cellulose/Al2O3@rGO composite films: effect of the particle size. Nanotechnology. 2022;33(13):135711.

[69]

Yan M, Chen X, Xu Y, et al. Facile bottom-up synthesis of reduced graphene oxide/aramid nanofiber composite films with high thermal conductivity. Compos Commun. 2023;37:101428.

[70]

Vu MC, Mani D, Jeong T-H. et al. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem Eng J. 2022;429:132182.

[71]

Han Y, Ruan K, Gu J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew Chem Int Ed. 2023;135(5):e202216093.

[72]

Huang X, Tuersun Y, Luo P, Yang H, Chu S. In-situ reduction of Agnps on MXene surfaces for synthesis of efficient thermally conductive composites with powerful electromagnetic shielding capabilities. Colloids Surf A. 2023;677:132444.

[73]

Li M, Sun Y, Feng D, Ruan K, Liu X, Gu J. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023;16(5):7820-7828.

[74]

Jiao E, Wu K, Liu Y, et al. Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond. J Mater Sci. 2022;57(4):2584-2596.

[75]

Nguyen VP, Lim M, Kim K-S. et al. Drastically increased electrical and thermal conductivities of Pt-infiltrated MXenes. J Mater Chem A. 2021;9(17):10739-10746.

[76]

Chen Y, Zhang H, Chen J, et al. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano. 2022;16(9):14323-14333.

[77]

Guo H, Zhao H, Niu H, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano. 2021;15(4):6917-6928.

[78]

Li D, Gong Y, Chen Y, et al. Recent progress of two-dimensional thermoelectric materials. Nano Micro Lett. 2020;12:36.

[79]

Huang H, Cui Y, Li Q, et al. Metallic 1t phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy. 2016;26:172-179.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (4280KB)

316

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/