Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics

Yin Pan , Weizhen Liang , Zongpeng Wang , Junjie Gong , Yichao Wang , Aijiao Xu , Zhenyuan Teng , Shijie Shen , Lin Gu , Wenwu Zhong , Hongsheng Lu , Baofu Chen

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 935 -945.

PDF (5541KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 935 -945. DOI: 10.1002/idm2.12203
RESEARCH ARTICLE

Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics

Author information +
History +
PDF (5541KB)

Abstract

TiO2 has attracted much attention in the field of photocatalytic degradation of antibiotics due to its good photostability, nontoxicity, and low cost. However, the rapid recombination of photogenerated carriers limits the further improvement of its photocatalytic activity. Here, a facile microwave-assisted hydrothermal method has been developed to prepare Pt clusters decorated TiO2 nanoparticles. Pt clusters ranging in size from 1 to 2 nm are uniformly distributed across the surface of the TiO2 matrix. A pronounced charge transfer phenomenon is discernible between the Pt and TiO2 components. It is revealed that the charge transfer enables faster transfer and separation of photogenerated electrons and holes, which are beneficial for the improvement of photocatalytic degradation of both ofloxacin and levofloxacin. The degradation capability can be attributed to the efficient generation of •OH or •O2 species within the solution. The parallel adsorption model of TiO2 on antibiotic molecules is verified, and the degradation reaction pathway has been elucidated. This work provides a facile method for optimizing the performance of TiO2 photocatalysts, which can be extended to other oxide photocatalysts.

Keywords

degradation of antibiotics / nanomaterials / oxide photocatalysts / photocatalytic reaction

Cite this article

Download citation ▾
Yin Pan, Weizhen Liang, Zongpeng Wang, Junjie Gong, Yichao Wang, Aijiao Xu, Zhenyuan Teng, Shijie Shen, Lin Gu, Wenwu Zhong, Hongsheng Lu, Baofu Chen. Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics. Interdisciplinary Materials, 2024, 3(6): 935-945 DOI:10.1002/idm2.12203

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu X, Nie S, Ding H, Hou FF. Environmental pollution and kidney diseases. Nat Rev Nephrol. 2018;14(5):313-324.

[2]

Ramesh B, Saravanan A, Senthil Kumar P, et al. A review on algae biosorption for the removal of hazardous pollutants from wastewater: limiting factors, prospects and recommendations. Environ Pollut. 2023;327:121572.

[3]

Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice defects and electronic modulation of flower-like ZN3IN2S6 promote photocatalytic degradation of multiple antibiotics. Small Methods. 2024. In press.

[4]

Li Q, Chen Z, Wang H, et al. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci Total Environ. 2021;792:148546.

[5]

Rubangakene NO, Elkady M, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels. Environ Res. 2023;220:115272.

[6]

Al-sareji OJ, Meiczinger M, Somogyi V, et al. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J Environ Chem Eng. 2023;11(3):109803.

[7]

Zheng Z, Liang W, Lin R, et al. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct. 2023;4(4):2200291.

[8]

Rayu S, Karpouzas DG, Singh BK. Emerging technologies in bioremediation: constraints and opportunities. Biodegradation. 2012;23(6):917-926.

[9]

Yu Y, Zeng Q, Tao S, et al. Carbon dots based photoinduced reactions: advances and perspective. Adv Sci. 2023;10(12):2207621.

[10]

He Z, Yang H, Wong NH, et al. Construction of Cu7S4@CuCO2O4 yolk-shell microspheres composite and Elucidation of its enhanced photocatalytic activity, mechanism, and pathway for carbamazepine degradation. Small. 2023;19(18):2207370.

[11]

Chen Z-Y, Huang N-Y. Xu Q. Metal halide perovskite materials in photocatalysis: design strategies and applications. Coord Chem Rev. 2023;481:215031.

[12]

Chen F-Z, Li Y-J. Zhou M, et al. Smart multifunctional direct Z-scheme IN2S3@PCN-224 heterojunction for simultaneous detection and photodegradation towards antibiotic pollutants. Appl Catal B. 2023;328:122517.

[13]

Zhang Z, Liang J, Zhang W, et al. Modified-pollen confined hybrid system: a promising union for visible-light-driven photocatalytic antibiotic degradation. Appl Catal B. 2023;330:122621.

[14]

Wang S, An W, Lu J, et al. A Cu/CuFe2O4-OVs two-electron centre-based synergistic photocatalysis-fenton system for efficient degradation of organic pollutants. Chem Eng J. 2022;441:135944.

[15]

Dong X, Cui Z, Sun Y, Dong F. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): a combined operando and theoretical investigation. ACS Catal. 2021;11(13):8132-8139.

[16]

Dong C, Marinova M, Tayeb KB, et al. Direct photocatalytic synthesis of acetic acid from methane and CO at ambient temperature using water as oxidant. J Am Chem Soc. 2023;145(2):1185-1193.

[17]

Thind SS, Paul M, Hayden JB, Joshi A, Goodlett D, McIndoe JS. A highly efficient photocatalytic system for environmental applications based on TiO2 nanomaterials. Ind Chem Mater. 2023;1(3):431-442.

[18]

Zhu H, Zhen C, Chen X, et al. Patterning alternate TiO2 and Cu2O strips on a conductive substrate as film photocatalyst for Z-scheme photocatalytic water splitting. Sci Bull. 2022;67(23):2420-2427.

[19]

Liu Z, Sun L, Zhang Q, Teng Z, Sun H, Su C. TiO2-supported single-atom catalysts: synthesis, structure, and application. Chem Res Chin Univ. 2022;38(5):1123-1138.

[20]

Du S, Lian J, Zhang F. Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications. Trans Tianjin Univ. 2022;28(1):33-52.

[21]

Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv Mater. 2024;36(17):2305285.

[22]

Wang J, Wang Z, Wang W, et al. Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale. 2022;14(18):6709-6734.

[23]

Liccardo L, Bordin M, Sheverdyaeva PM, et al. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis. Adv Funct Mater. 2023;33(22):2212486.

[24]

Putta Rangappa A, Praveen Kumar D, Do KH, Wang J, Zhang Y, Kim TK. Synthesis of pore-wall-modified stable COF/TiO2 heterostructures via site-specific nucleation for an enhanced photoreduction of carbon dioxide. Adv Sci. 2023;10(14):2300073.

[25]

Shi C, Ye S, Wang X, et al. Modular construction of Prussian blue analog and TiO2 dual-compartment Janus nanoreactor for efficient photocatalytic water splitting. Adv Sci. 2021;8(7):2001987.

[26]

Milošević M, Radoičić M, Ohara S, et al. Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric. Cellulose. 2023;30(7):4749-4771.

[27]

Gao R, Hao C, Xu L, et al. Near-infrared chiroptical activity titanium dioxide supraparticles with circularly polarized light induced antibacterial activity. ACS Nano. 2023;18(1):641-651.

[28]

Yang Y, Wang R, Han Z, et al. Industrially scalable and refreshable photocatalytic foam. Adv Sustainable Syst. 2023;7(6):2300041.

[29]

Tang J, Fu M, Mao Y, et al. Decorating {001} TiO2 nanosheets on hydrophobic NaY zeolite: an efficient deactivation-resistant photocatalyst for gaseous toluene removal. Chem Eng J. 2023;472:144883.

[30]

Zhou T, Lv T, Xiao B, et al. Cu and Pd dual-single-atoms anchored titanium dioxide for remarkable photocatalytic H2 evolution efficiency. Chem Eng J. 2023;478:147372.

[31]

Yuan W, Cheng L, An Y, et al. Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: toward highly visible light-driven photocatalytic hydrogen evolution. Adv Sci. 2018;5(6):1700870.

[32]

Zhang X, Liu W, Han F, Jiang L, Li Z. Composite of titanium dioxide and hydrogen-bonded organic framework-a dye-sensitized photocatalyst. Appl Surf Sci. 2024;644:158770.

[33]

Tang R, Zeng H, Feng C, et al. Twisty C-TiO2/PCN S-scheme heterojunction with enhanced n→π* electronic excitation for promoted piezo-photocatalytic effect. Small. 2023;19(18):2207636.

[34]

Wang Y, Qin S, Denisov N, et al. Reactive deposition versus strong electrostatic adsorption (SEA): a key to highly active single atom co-catalysts in photocatalytic H2 generation. Adv Mater. 2023;35(32):2211814.

[35]

Wu S-M, Hwang I, Osuagwu B, et al. Fluorine aided stabilization of Pt single atoms on TiO2 nanosheets and strongly enhanced photocatalytic H2 evolution. ACS Catal. 2023;13(1):33-41.

[36]

Jiang T, Jia C, Zhang L, et al. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale. 2015;7(1):209-217.

[37]

Wang Q, Fang X, Hao P, et al. Green preparation of porous hierarchical TiO2(B)/anatase phase junction for effective photocatalytic degradation of antibiotics. Chem Commun. 2021;57(96):13024-13027.

[38]

Chi Q, Zhu G, Jia D, et al. Built-in electric field for photocatalytic overall water splitting through a TiO2/BiOBr P-N heterojunction. Nanoscale. 2021;13(8):4496-4504.

[39]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15-50.

[40]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter Mater Phys. 1996;54(16):11169-11186.

[41]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys. 1999;59(3):1758-1775.

[42]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.

[43]

Perdew JP, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys. 1996;105(22):9982-9985.

[44]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (5541KB)

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/