Advances in electrolyte–anode interface engineering of solid-state lithium metal batteries

Menghong Li , Shubin Yang , Bin Li

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 805 -834.

PDF (6175KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (6) : 805 -834. DOI: 10.1002/idm2.12202
REVIEW

Advances in electrolyte–anode interface engineering of solid-state lithium metal batteries

Author information +
History +
PDF (6175KB)

Abstract

Solid-state lithium metal batteries are considered to be the next generation of energy storage systems due to the high energy density brought by the use of metal lithium anode and the safety features brought by the use of solid electrolytes (SEs). Unfortunately, besides the safety features, using SEs brings issues of interfacial contact of lithium anode and electrolytes. Recently, to realize the application of solid-state lithium metal batteries, significant achievements have been made in the interface engineering of solid-state batteries, and various new strategies have been proposed. In this review, from the interface failure perspective of solid-state lithium metal batteries, we summarize failure mechanisms in terms of poor physical contact, weak chemical/electrochemical stability, continuing contact degradation, and uncontrollable lithium deposition. We then focused on the latest strategies for solving interface issues, including advancing in improving the physical solid–solid contact, increasing the electrochemical/chemical stability, restraining continuing contact degradation, and controlling homogeneous lithium deposition. The ultimate and paramount future developing directions of solidstate lithium metal battery interface engineering are proposed.

Keywords

electrolyte/electrode interface / lithium metal anode / polymers electrolyte / solid-state batteries / solid-state electrolyte

Cite this article

Download citation ▾
Menghong Li, Shubin Yang, Bin Li. Advances in electrolyte–anode interface engineering of solid-state lithium metal batteries. Interdisciplinary Materials, 2024, 3(6): 805-834 DOI:10.1002/idm2.12202

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3:57-94.

[2]

Du M, Liao K, Lu Q, Shao Z. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ Sci. 2019;12:1780-1804.

[3]

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021;11:2002689.

[4]

Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater. 2022;12:2100748.

[5]

Pan J, Zhao P, Wang N, Huang F, Dou S. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ Sci. 2022;15:2753-2775.

[6]

Zhu G-R, Zhang Q, Liu Q-S. et al. Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat Commun. 2023;14:4617.

[7]

Yang L, Huang Y, Tufail MK, Wang X, Yang W. An unprecedented fireproof, anion-immobilized composite electrolyte obtained via solidifying carbonate electrolyte for safe and high-power solid-state lithium-ion batteries. Small. 2022;18:2202060.

[8]

Cao Z, Chen H, Du Z, et al. Low-tortuous MXene (TiNbC) accordion arrays enabled fast ion diffusion and charge transfer in dendrite-free lithium metal anodes. Adv Energy Mater. 2022;12:2201189.

[9]

Bao C, Zheng C, Wu M, et al. 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv Energy Mater. 2023;13:2204028.

[10]

Lu G, Liu W, Yang Z, et al. Superlithiophilic, ultrastable, and ionic-conductiv interface enabled long lifespan all-solid-state lithium-metal batteries under high mass loading. Adv Funct Mater. 2023;33:2304407.

[11]

Lu G, Li M, Chen P, et al. Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries. Energy Environ Sci. 2023;16:1049-1061.

[12]

Nomura Y, Yamamoto K. Advanced characterization techniques for sulfide-based solid-state lithium batteries. Adv Energy Mater. 2023;13:2203883.

[13]

Wang Z, Heasman P, Rostami J, et al. Dynamic networks of cellulose nanofibrils enable highly conductive and strong polymer gel electrolytes for lithium-ion batteries. Adv Funct Mater. 2023;33:2212806.

[14]

Ma Y, Wan J, Yang Y, et al. Scalable, Ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv Energy Mater. 2022;12:2103720.

[15]

Kwak H, Kim J-S. Han D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat Commun. 2023;14:2459.

[16]

Liu K, Li X, Cai J, et al. Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number. ACS Energy Lett. 2021;6:1315-1323.

[17]

Zhang Z, Shao Y, Lotsch B, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci. 2018;11:1945-1976.

[18]

Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv Mater. 2019;31:1901131.

[19]

Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev. 2020;120:4257-4300.

[20]

Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019;18:1278-1291.

[21]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011;10:682-686.

[22]

Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci. 2014;7:627-631.

[23]

Li C, Li R, Liu K, Si R, Zhang Z, Hu Y-S. NaSICON: a promising solid electrolyte for solid-state sodium batteries. Interdiscip Mater. 2022;1:396-416.

[24]

Ma Q, Fu S, Wu A-J. et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv Energy Mater. 2023;13:2203892.

[25]

Xiong Z, Wang Z, Zhou W, et al. 4.2 V polymer all-solid-state lithium batteries enabled by high-concentration PEO solid electrolytes. Energy Storage Mater. 2023;57:171-179.

[26]

Han Q, Wang S, Wang L, et al. Exploiting iodine redox chemistry for achieving high-capacity and durable peo-based all-solid-state LiFePO4/Li batteries. Adv Energy Mater. 2023;13:2301462.

[27]

Cheng Y, Liu X, Guo Y, et al. Monodispersed sub-1 nm inorganic cluster chains in polymers for solid electrolytes with enhanced Li-ion transport. Adv Mater. 2023;35:2303226.

[28]

Yang T, Wang C, Zhang W, et al. A critical review on composite solid electrolytes for lithium batteries: design strategies and interface engineering. J Energy Chem. 2023;84:189-209.

[29]

Zhai Y, Hou W, Tao M, et al. Enabling high-voltage “superconcentrated ionogel-in-ceramic”hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv Mater. 2022;34:2205560.

[30]

Wang C, Deng T, Fan X, et al. Identifying soft breakdown in all-solid-state lithium battery. Joule. 2022;6:1770-1781.

[31]

Cao D, Zhang K, Li W, et al. Nondestructively visualizing and understanding the mechano-electro-chemical origins of “soft short”and “creeping”in all-solid-state batteries. Adv Funct Mater. 2023;33:2307998.

[32]

Chen N, Gui B, Yang B, et al. LiPF6 induces phosphorization of garnet-type solid-state electrolyte for stable lithium metal batteries. Small. 2024;20:e2305576.

[33]

Liang J, Luo J, Sun Q, Yang X, Li R, Sun X. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019;21:308-334.

[34]

Xu Y, Jia H, Gao P, et al. Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes. Nat Energy. 2023;8:1345-1354.

[35]

Chae OB, Lucht BL. Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes. Adv Energy Mater. 2023;13:2203791.

[36]

Liu Q, Zhou D, Shanmukaraj D, et al. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries. ACS Energy Lett. 2020;5:1456-1464.

[37]

Guo S, Wu T-T. Sun Y-G, et al. Interface engineering of a ceramic electrolyte by Ta2O5 nanofilms for ultrastable lithium metal batteries. Adv Funct Mater. 2022;32:2201498.

[38]

Ding J-F, Xu R, Yan C, Li B-Q. Yuan H, Huang J-Q. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J Energy Chem. 2021;59:306-319.

[39]

Lewis JA, Cortes FJQ, Liu Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando x-ray tomography. Nat Mater. 2021;20:503-510.

[40]

Cui C, Zeng C, Huang G, et al. In situ visualizing the interfacial failure mechanism and modification promotion of LAGP solid electrolyte toward Li metal anode. Adv Energy Mater. 2022;12:2202250.

[41]

Xu X, Evdokimov PV, Volkov VS, et al. Internal failure coupled with interfacial disintegration of solid-state electrolyte induced by the electrodeposition of lithium metal under defected interface. Energy Storage Mater. 2023;57:421-428.

[42]

Gao Y, Zhang B. Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv Mater. 2023;35:2205421.

[43]

Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater. 2023;35:2110423.

[44]

Wang C, Kim JT, Wang C, Sun X. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv Mater. 2023;35:2209074.

[45]

Fan L-Z, He H, Nan C-W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater. 2021;6:1003-1019.

[46]

Kong W, Jiang Z, Liu Y, et al. Stabilizing Li1.3Al0.3Ti1.7(PO4)3|Li metal anode interface in solid-state batteries by kevlar aramid nanofiber-based protective coating. Adv Funct Mater. 2023;33:2306748.

[47]

Lewis JA, Cavallaro KA, Liu Y, McDowell MT. The promise of alloy anodes for solid-state batteries. Joule. 2022;6:1418-1430.

[48]

Nguyen HL, Luu VT, Nguyen MC, et al. Nb/Al co-doped Li7La3Zr2O12 composite solid electrolyte for high-performance all-solid-state batteries. Adv Funct Mater. 2022;32:2207874.

[49]

Wan H, Wang Z, Zhang W, He X, Wang C. Interface design for all-solid-state lithium batteries. Nature. 2023;623:739-744.

[50]

Xu H, Zhu Q, Zhao Y, Du Z, Li B, Yang S. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries. Adv Mater. 2023;35:2212111.

[51]

Zhao L, Du Y, Zhao E, et al. Dynamic supramolecular polymer electrolyte to boost ion transport kinetics and interfacial stability for solid-state batteries. Adv Funct Mater. 2023;33:2214881.

[52]

Lei W, Jiao X, Yang S, et al. Temperature and stress-resistant solid state electrolyte for stable lithium-metal batteries. Energy Storage Mater. 2022;49:502-508.

[53]

Zhu G-L, Zhao C-Z. Peng H-J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries. Adv Funct Mater. 2021;31:2101985.

[54]

Ma J, Zhang S, Zheng Y, et al. Interelectrode talk in solid-state lithium-metal batteries. Adv Mater. 2023;35:2301892.

[55]

Li M, Hicks RP, Chen Z, et al. Electrolytes in organic batteries. Chem Rev. 2023;123:1712-1773.

[56]

Kim SC, Wang J, Xu R, et al. High-entropy electrolytes for practical lithium metal batteries. Nat Energy. 2023;8:814-826.

[57]

Wang H, Yu Z, Kong X, et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule. 2022;6:588-616.

[58]

Liu Y, Xu X, Jiao X, Kapitanova OO, Song Z, Xiong S. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte. Adv Mater. 2023;35:2301152.

[59]

Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater. 2019;18:1105-1111.

[60]

Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120:6878-6933.

[61]

Chen L, Gu T, Ma J, et al. In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8CO0.1MN0.1O2/lithium metal batteries. Nano Energy. 2022;100:107470.

[62]

Sheng O, Hu H, Liu T, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv Funct Mater. 2022;32:2111026.

[63]

Yang S-J, Yao N, Jiang F-N. et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew Chem Int Ed. 2022;61:e202214545.

[64]

Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. Lithium batteries and the solid electrolyte interphase (SEI)-progress and outlook. Adv Energy Mater. 2023;13:2203307.

[65]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587-603.

[66]

Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31:1902029.

[67]

Zhang W, Zhang S, Fan L, et al. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019;4:644-650.

[68]

Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4:3253-3266.

[69]

Han F, Gao T, Zhu Y, Gaskell KJ, Wang C. A battery made from a single material. Adv Mater. 2015;27:3473-3483.

[70]

Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater. 2018;4:15.

[71]

Chen C, Amine K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics. 2001;144:51-57.

[72]

Xu X, Wen Z, Yang X, Zhang J, Gu Z. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics. 2006;177:2611-2615.

[73]

Zhu L, Wang Y, Wu Y, et al. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability. Adv Funct Mater. 2022;32:2201136.

[74]

Wu D, Chen L, Li H, Wu F. Solid-state lithium batteries-from fundamental research to industrial progress. Prog Mater Sci. 2023;139:101182.

[75]

Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015;7:23685-23693.

[76]

Sarkar S, Thangadurai V. Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett. 2022;7:1492-1527.

[77]

Huo H, Luo J, Thangadurai V, Guo X, Nan C-W. Sun X. Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett. 2020;5:252-262.

[78]

Lee K, Kazyak E, Wang MJ, Dasgupta NP, Sakamoto J. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule. 2022;6:2547-2565.

[79]

Gao X, Xing Z, Wang M, et al. Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries. Energy Storage Mater. 2023;60:102821.

[80]

Xia W, Zhao Y, Zhao F, et al. Antiperovskite electrolytes for solid-state batteries. Chem Rev. 2022;122:3763-3819.

[81]

Gao H, Ai X, Wang H, et al. Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nat Commun. 2022;13:5050.

[82]

Han SY, Lee C, Lewis JA, et al. Stress evolution during cycling of alloy-anode solid-state batteries. Joule. 2021;5:2450-2465.

[83]

Luo L, Sun Z, Gao H, et al. Insights into the enhanced interfacial stability enabled by electronic conductor layers in solid-state Li batteries. Adv Energy Mater. 2023;13:2203517.

[84]

Din MMU, Ladenstein L, Ring J, et al. A guideline to mitigate interfacial degradation processes in solid-state batteries caused by cross diffusion. Adv Funct Mater. 2023;33:2303680.

[85]

Sun F, Dong K, Osenberg M, et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction. J Mater Chem A. 2018;6:22489-22496.

[86]

Yao Y-X, Wan J, Liang N-Y. Yan C, Wen R, Zhang Q. Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries. J Am Chem Soc. 2023;145:8001-8006.

[87]

Huang W-Z, Zhao C-Z. Wu P, et al. Anode-free solid-state lithium batteries: a review. Adv Energy Mater. 2022;12:2201044.

[88]

Li Z, Zheng W, Lu G, et al. Superionic conductor enabled composite lithium with high ionic conductivity and interfacial wettability for solid-state lithium batteries. Adv Funct Mater. 2024;34:2309751.

[89]

Wei J, Yang Z, Lu G, et al. Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Mater. 2022;53:204-211.

[90]

Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys Chem Chem Phys. 2013;15:18600-18606.

[91]

Zhang X, Xiang Q, Tang S, Wang A, Liu X, Luo J. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 2020;20:2871-2878.

[92]

Sun M, Liu T, Yuan Y, et al. Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett. 2021;6:451-458.

[93]

Xu H, Li Y, Zhou A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40°C. Nano Lett. 2018;18:7414-7418.

[94]

Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16:18294-18300.

[95]

Ren Y, Shen Y, Lin Y, Nan C-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27-30.

[96]

Bi Z, Sun Q, Jia M, Zuo M, Zhao N, Guo X. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv Funct Mater. 2022;32:2208751.

[97]

Hartmann P, Leichtweiss T, Busche MR, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C. 2013;117:21064-21074.

[98]

Liu H, Cheng X-B. Huang J-Q, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020;5:833-843.

[99]

Harry KJ, Liao X, Parkinson DY, Minor AM, Balsara NP. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J Electrochem Soc. 2015;162: a2699-a2706.

[100]

Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources. 2017;343:119-126.

[101]

Wang MJ, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule. 2019;3:2165-2178.

[102]

Chen Y, Wang Z, Li X, et al. Li metal deposition and stripping in a solid-state battery via coble creep. Nature. 2020;578:251-255.

[103]

Haslam CG, Wolfenstine JB, Sakamoto J. The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. J Power Sources. 2022;520:230831.

[104]

Ishiguro K, Nakata Y, Matsui M, et al. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc. 2013;160: a1690-a1693.

[105]

Rangasamy E, Sahu G, Keum JK, Rondinone AJ, Dudney NJ, Liang C. A high conductivity oxide-sulfide composite lithium superionic conductor. J Mater Chem A. 2014;2:4111-4116.

[106]

Krauskopf T, Hartmann H, Zeier WG, Janek J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11:14463-14477.

[107]

Gupta A, Kazyak E, Craig N, Christensen J, Dasgupta NP, Sakamoto J. Evaluating the effects of temperature and pressure on Li/PEO-LiTFSI interfacial stability and kinetics. J Electrochem Soc. 2018;165: a2801-a2806.

[108]

Liu M, Zhang S, van Eck ERH, Wang C, Ganapathy S, Wagemaker M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat Nanotechnol. 2022;17:959-967.

[109]

Xiong S, Liu Y, Jankowski P, et al. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater. 2020;30:2001444.

[110]

Wang C, Sun Q, Liu Y, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes. Nano Energy. 2018;48:35-43.

[111]

Piao Z, Gao R, Liu Y, Zhou G, Cheng H-M. A review on regulating Li+solvation structures in carbonate electrolytes for lithium metal batteries. Adv Mater. 2023;35:2206009.

[112]

Piao N, Liu S, Zhang B, et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021;6:1839-1848.

[113]

Cao X, Xu Y, Zou L, et al. Stability of solid electrolyte interphases and calendar life of lithium metal batteries. Energy Environ Sci. 2023;16:1548-1559.

[114]

Xu B, Duan H, Liu H, Wang CA, Zhong S. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl Mater Interfaces. 2017;9:21077-21082.

[115]

Sarkar S, Chen B, Zhou C, et al. Synergistic approach toward developing highly compatible garnet-liquid electrolyte interphase in hybrid solid-state lithium-metal batteries. Adv Energy Mater. 2023;13:2203897.

[116]

Wang Z, Tan R, Wang H, et al. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv Mater. 2018;30:1704436.

[117]

Tang L, Chen B, Zhang Z, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat Commun. 2023;14:2301.

[118]

McGrogan FP, Swamy T, Bishop SR, et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv Energy Mater. 2017;7:1602011.

[119]

Ahmad N, Zhou L, Faheem M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces. 2020;12:21548-21558.

[120]

Lian P-J, Zhao B-S. Zhang L-Q, Xu N, Wu M-T. Gao X-P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J Mater Chem A. 2019;7:20540-20557.

[121]

Khurram Tufail M, Ahmad N, Zhou L, et al. Insight on air-inducedbh degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chem Eng J. 2021;425:130535.

[122]

Ohta N, Takada K, Sakaguchi I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun. 2007;9:1486-1490.

[123]

Ito S, Fujiki S, Yamada T, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8CO0.15Al0.05O2 and a sulfide based electrolyte. J Power Sources. 2014;248:943-950.

[124]

Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte. J Power Sources. 2009;189:527-530.

[125]

Seino Y, Ota T, Takada K. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8CO0.15Al0.05O2 and a sulfide-based solid electrolyte. J Power Sources. 2011;196:6488-6492.

[126]

Okada K, Machida N, Naito M, et al. Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3MN1/3CO1/3)O2 for all-solid-state batteries. Solid State Ionics. 2014;255:120-127.

[127]

Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer”and “polymer-in-ceramic”electrolytes for dendrite-free solid-state batteries. Adv Energy Mater. 2019;9:1804004.

[128]

Liang J-Y, Zeng X-X. Zhang X-D, et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J Am Chem Soc. 2019;141:9165-9169.

[129]

Wang S, Liao Y, Li S, et al. Ultrathin all-inorganic halide solid-state electrolyte membranes for all-solid-state Li-ion batteries. Adv Energy Mater. 2024;14:2303641.

[130]

Luo J, Sun Q, Liang J, et al. Rapidly in situ cross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries. ACS Energy Lett. 2023;8:3676-3684.

[131]

Ling W, Fu N, Yue J, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries. Adv Energy Mater. 2020;10:1903966.

[132]

Mu K, Wang D, Dong W, et al. Hybrid crosslinked solid polymer electrolyte via in-situ solidification enables high-performance solid-state lithium metal batteries. Adv Mater. 2023;35:2304686.

[133]

Wang G, Liang Y, Liu H, Wang C, Li D, Fan L-Z. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip Mater. 2022;1:434-444.

[134]

Hu L, Wang J, Wang K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat Commun. 2023;14:3807.

[135]

Pan H, Zhang M, Cheng Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci Adv. 2022;8:eabN4372.

[136]

Yang C, Xie H, Ping W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater. 2019;31:1804815.

[137]

Wang C, Xie H, Zhang L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv Energy Mater. 2018;8:1701963.

[138]

He X, Ji X, Zhang B, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 2022;7:131-139.

[139]

Lee K, Han S, Lee J, et al. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2022;7:381-389.

[140]

Han X, Gong Y, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16:572-579.

[141]

Alexander GV, Patra S, Sobhan Raj SV, Sugumar MK, Ud Din MM, Murugan R. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+conductors. J Power Sources. 2018;396:764-773.

[142]

Choi HJ, Kang DW, Park J-W. et al. In situ formed Ag-Li inteetallic layer for stable cycling of all-solid-state lithium batteries. Adv Sci. 2022;9:2103826.

[143]

Fu K, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-stat electrolyte/metallic Li interface. Sci Adv. 2017;3:e1601659.

[144]

Wu X, Billaud J, Jerjen I, et al. Operando visualization of morphological dynamics in all-solid-state batteries. Adv Energy Mater. 2019;9:1901547.

[145]

Luo W, Gong Y, Zhu Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138:12258-12262.

[146]

Luo S, Liu X, Zhang X, et al. Nanostructure of the interphase layer between a single Li dendrite and sulfide electrolyte in all-solid-state Li batteries. ACS Energy Lett. 2022;7:3064-3071.

[147]

Santhosha AL, Medenbach L, Buchheim JR, Adelhelm P. The indium−lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps. 2019;2:524-529.

[148]

Fu K, Gong Y, Fu Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries. Angew Chem Int Ed. 2017;56:14942-14947.

[149]

Luo W, Gong Y, Zhu Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater. 2017;29:1606042.

[150]

Nagao M, Hayashi A, Tatsumisago M. Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry. 2012;80:734-736.

[151]

Deng T, Ji X, Zhao Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv Mater. 2020;32:2000030.

[152]

Wang C, Zhao Y, Sun Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy. 2018;53:168-174.

[153]

Niu Y, Yu Z, Zhou Y, et al. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: a nano-interlayer/Li pre-reduction strategy. Nano Res. 2022;15:7180-7189.

[154]

Yang X, Tang S, Zheng C, et al. From contaminated to highly lithiated interfaces: a versatile modification strategy for garnet solid electrolytes. Adv Funct Mater. 2023;33:2209120.

[155]

Gao Q, Wu D, Wang Z, et al. Superior lithium-metal all-solid-state batteries with in-situ formed Li3N-LiF-rich interphase. Energy Storage Mater. 2023;63:103007.

[156]

Wang L, Zhang L, Wang Q, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018;10:16-23.

[157]

Guo J-C, Tan S-J. Zhang C-H, et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv Mater. 2023;35:2300350.

[158]

Wang Z, Wang Y, Shen L, et al. Towards durable practical lithium-metal batteries: advancing the feasibility of poly-DOL-based quasi-solid-state electrolytes via a novel nitrate-based additive. Energy Environ Sci. 2023;16:4084-4092.

[159]

Wang H, Cheng H, Li D, et al. Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv Energy Mater. 2023;13:2204425.

[160]

Xiong B-Q, Nian Q, Zhao X, et al. Transforming interface chemistry throughout garnet electrolyte for dendrite-free solid-state batteries. ACS Energy Lett. 2023;8:537-544.

[161]

Zhai P, Ahmad N, Qu S, Feng L, Yang W. A lithiophilic-lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries. Adv Funct Mater. 2024;34:2316561.

[162]

Gu Y, Hu J, Lai C, Li C. NASICON-based solid state Li-fluoride conversion batteries enabled by constructing a fluorine-rich trap for Ti4+. Adv Energy Mater. 2023;13:2203679.

[163]

Jiang J, Ou Y, Lu S, et al. In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Mater. 2022;50:810-818.

[164]

Li D, Liu H, Wang C, et al. High ionic conductive, mechanical robust sulfide solid electrolyte films and interface design for all-solid-state lithium metal batteries. Adv Funct Mater. 2024;34:2315555.

[165]

Zhang S, Liu H, Liu Z, et al. Non-resonant structure induces n-rich solid electrolyte interface toward ultra-stable solid-state lithium-metal batteries. Adv Funct Mater. 2024;34:2401377.

[166]

Hu X, Yu J, Wang Y, et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries. Adv Mater. 2024;36:2308275.

[167]

Nikodimos Y, Huang C-J. Taklu BW, Su W-N. Hwang BJ. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ Sci. 2022;15:991-1033.

[168]

Zhang J, Wang C, Zheng M, et al. Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries. Nano Energy. 2022;102:107672.

[169]

Guo C, Shen Y, Mao P, et al. Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state Li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv Funct Mater. 2023;33:2213443.

[170]

Li S, Huang J, Cui Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat Nanotechnol. 2022;17:613-621.

[171]

Hu J, Lai C, Chen K, et al. Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat Commun. 2022;13:7914.

[172]

Feng W, Dong X, Lai Z, et al. Building an interfacial framework: Li/garnet interface stabilization through a Cu6SN5 Layer. ACS Energy Lett. 2019;4:1725-1731.

[173]

Naren T, Kuang G-C. Jiang R, et al. Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries. Angew Chem Int Ed. 2023;62:e202305287.

[174]

Cheng T, Merinov BV, Morozov S, Goddard III WA. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2017;2:1454-1459.

[175]

Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics. 2018;318:102-112.

[176]

Suyama M, Kato A, Sakuda A, Hayashi A, Tatsumisago M. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim Acta. 2018;286:158-162.

[177]

Wang Z, Shen L, Deng S, Cui P, Yao X. 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021;33:2100353.

[178]

Liu S, Zhao Y, Li X, Yu J, Yan J, Ding B. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv Mater. 2021;33:2008084.

[179]

Li N-W, Shi Y, Yin Y-X. et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed. 2018;57:1505-1509.

[180]

Hu Z, Zhang S, Dong S, et al. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem Mater. 2017;29:4682-4689.

[181]

Dai T, Wu S, Lu Y, et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat Energy. 2023;8:1221-1228.

[182]

Zhou B, He D, Hu J, et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J Mater Chem A. 2018;6:11725-11733.

[183]

Zhou B, Zuo C, Xiao Z, et al. Self-healing polymer electrolytes formed via dual-networks: a new strategy for flexible lithium metal batteries. Chem Eur J. 2018;24:19200-19207.

[184]

Chen T, Kong W, Zhang Z, et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy. 2018;54:17-25.

[185]

Guo P, Su A, Wei Y, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11:19413-19420.

[186]

Zhou B, Deng T, Yang C, et al. Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv Funct Mater. 2023;33:2212005.

[187]

Liu X, Garcia-Mendez R, Lupini AR, et al. Local electronic structure variation resulting in Li ‘filament’formation within solid electrolytes. Nat Mater. 2021;20:1485-1490.

[188]

Yi E, Wang W, Kieffer J, Laine RM. Flame made nanoparticles permit processing of dense, flexible, Li+conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J Mater Chem A. 2016;4:12947-12954.

[189]

Wang Y, Yan P, Xiao J, Lu X, Zhang J-G. Sprenkle VL. Effect of Al2O3 on the sintering of garnet-type Li6.5La3Zr1.5Ta0.5O12. Solid State Ion. 2016;294:108-115.

[190]

Shin R-H, Son SI, Han YS, et al. Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries. Solid State Ionics. 2017;301:10-14.

[191]

Janani N, Deviannapoorani C, Dhivya L, Murugan R. Influence of sintering additives on densification and Li+conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv. 2014;4:51228-51238.

[192]

Ji X, Hou S, Wang P, et al. Solid-state electrolyte design for lithium dendrite suppression. Adv Mater. 2020;32:2002741.

[193]

Song Y, Yang L, Zhao W, et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv Energy Mater. 2019;9:1900671.

[194]

Karuppiah C, Beshahwured SL, Wu Y-S. et al. Patterning and a composite protective layer provide modified Li metal anodes for dendrite-free high-voltage solid-state lithium batteries. ACS Appl Energy Mater. 2021;4:11248-11257.

[195]

Yang X, Gao X, Mukherjee S, et al. Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries. Adv Energy Mater. 2020;10:2001191.

[196]

Cao J, Xie Y, Yang Y, et al. Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv Sci. 2022;9:2104689.

[197]

Wang H, Gao H, Chen X, et al. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv Energy Mater. 2021;11:2102148.

[198]

Li Y, Cao D, Arnold W, et al. Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Mater. 2020;31:344-351.

[199]

Kang Q, Zhuang Z, Liu Y, et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-stat lithium metal batteries. Adv Mater. 2023;35:2303460.

[200]

Zhu J, Li X, Wu C, et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew Chem Int Ed. 2021;60:3781-3790.

[201]

Xu S, Sun Z, Sun C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv Funct Mater. 2020;30:2007172.

[202]

Yang G, Bai X, Zhang Y, et al. A bridge between ceramics electrolyte and interface layer to fast Li+transfer for low interface impedance solid-state batteries. Adv Funct Mater. 2023;33:2211387.

[203]

Yu J, Liu Q, Hu X, et al. Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries. Energy Storage Mater. 2022;46:68-75.

[204]

Kim J-S, Yoon G, Kim S, et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat Commun. 2023;14:782.

[205]

Lu P, Xia Y, Sun G, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAS1−xS5I (M=Si, Sn) sulfide solid electrolytes. Nat Commun. 2023;14:4077.

[206]

Gao Y, Wang D, Li YC, Yu Z, Mallouk TE, Wang D. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew Chem Int Ed. 2018;57:13608-13612.

[207]

Shi P, Ma J, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat Nanotechnol. 2023;18:602-610.

[208]

Lu Y, Zhao C-Z. Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv. 2021;7:eabi5520.

[209]

Lee S, Lee K, Kim S, et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci Adv. 2022;8:eabq0153.

[210]

Duan H, Wang C, Yu R, et al. In situ constructed 3D lithium anodes for long-cycling all-solid-state batteries. Adv Energy Mater. 2023;13:2300815.

[211]

Wang C, Lin R, He Y, et al. Tension-induced cavitation in Li-metal stripping. Adv Mater. 2023;35:2209091.

[212]

Fu Z-H, Chen X, Yao N, et al. The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. J Energy Chem. 2022;70:59-66.

[213]

Lee C, Han SY, Lewis JA, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface. ACS Energy Lett. 2021;6:3261-3269.

[214]

Gu J, Chen X, He Z, et al. Decoding internal stress-induced micro-short circuit events in sulfide-based all-solid-state Li-metal batteries via operando pressure measurements. Adv Energy Mater. 2023;13:2302643.

[215]

Zhu Y, Xie J, Pei A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat Commun. 2019;10:2067.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (6175KB)

1121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/