Oxygenated carbon nitride-based high-energy-density lithium-metal batteries

Mengnan Shen , Ying Wei , Man Ge , Shengdong Yu , Ronghui Dou , Liuhua Chen , Feng Wang , Yunhui Huang , Henghui Xu

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (5) : 791 -800.

PDF (2264KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (5) : 791 -800. DOI: 10.1002/idm2.12201
RESEARCH ARTICLE

Oxygenated carbon nitride-based high-energy-density lithium-metal batteries

Author information +
History +
PDF (2264KB)

Abstract

Lithium (Li)-metal batteries with polymer electrolytes are promising for highenergy-density and safe energy storage applications. However, current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities. This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride (2D OCN) into a polyvinylidene fluoride (PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN. The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity (1.6 × 10-4 S cm-1 at 25°C) and Li+ transference number (0.62), wide electrochemical window (5.3), and excellent fire resistance. Furthermore, the OCN-modified Li anode in situ generates a protective layer of Li3N during cycling, preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth. Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1mA cm-2. Full cells with a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode exhibit high energy density and longterm cycling stability, even at a high loading of 8.2 mg cm-2. Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.

Keywords

additive / lithium protection / oxygenated carbon nitride / polymer electrolytes

Cite this article

Download citation ▾
Mengnan Shen, Ying Wei, Man Ge, Shengdong Yu, Ronghui Dou, Liuhua Chen, Feng Wang, Yunhui Huang, Henghui Xu. Oxygenated carbon nitride-based high-energy-density lithium-metal batteries. Interdisciplinary Materials, 2024, 3(5): 791-800 DOI:10.1002/idm2.12201

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–657.

[2]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367.

[3]

Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Brief history of early lithium-battery development. Materials. 2020;13:1884.

[4]

Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016;1:18–42.

[5]

Tufail MK, Zhai P, Khokar W, Jia M, Zhao N, Guo X. Evaluation of solid electrolytes: development of conventional and interdisciplinary approaches. Interdiscip Mater. 2023;2:529–568.

[6]

Cheng XB, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries. SusMat. 2021;1:38–50.

[7]

Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37:449–458.

[8]

Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater. 2023;35:2110423.

[9]

Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456–458.

[10]

Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A. 2016;4:10070–10083.

[11]

Wang L, Chen Z, Liu Y, Li Y, Zhang H, He X. Safety perceptions of solid-state lithium metal batteries. eTransportation. 2023;16:100239.

[12]

Kou W, Zhang Y, Wu W, Guo Z, Hua Q, Wang J. Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy Environ. 2024;9:71–80.

[13]

Wang G, Liang Y, Liu H, Wang C, Li D, Fan LZ. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip Mater. 2022;1:434–444.

[14]

Yang B, Shi Y, Kang DJ, Chen Z, Pang H. Architectural design and electrochemical performance of MOF-based solid-state electrolytes for high-performance secondary batteries. Interdiscip Mater. 2023;2:475–510.

[15]

Yang SJ, Jiang FN, Hu JK, et al. Life cycle safety issues of lithium metal batteries: a perspective. Electron. 2023;1: e8.

[16]

Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics. 2003;156:393–399.

[17]

Nan CW, Fan L, Lin Y, Cai Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett. 2003;91:266104.

[18]

Croce F, Settimi L, Scrosati B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun. 2006;8:364–368.

[19]

Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5:229–252.

[20]

Birke P, Salam F, Döring S, Weppner W. A first approach to a monolithic all solid state inorganic lithium battery. Solid State Ionics. 1999;118:149–157.

[21]

Mauger A, Julien CM, Paolella A, Armand M, Zaghib K. Building better batteries in the solid state: a review. Materials. 2019;12:3892.

[22]

Zhang Q, Liu K, Ding F, Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017;10:4139–4174.

[23]

Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016;16:459–465.

[24]

Edman L, Doeff MM, Ferry A, Kerr J, De Jonghe LC. Transport properties of the solid polymer electrolyte system P(EO)nLiTFSI. J Phys Chem B. 2000;104:3476–3480.

[25]

Cabañero Martínez MA, Boaretto N, Naylor AJ, et al. Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv Energy Mater. 2022;12:2201264.

[26]

Jalbert PM, Commarieu B, Daigle JC, Claverie JP, Zaghib K. A 3D network based on poly(ϵ-caprolactone) macromonomers as polymer electrolyte for solid state lithium metal batteries. J Electrochem Soc. 2020;167:080527.

[27]

Mindemark J, Sun B, Törmä E, Brandell D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources. 2015;298:166–170.

[28]

Mi J, Ma J, Chen L, et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 2022;48:375–383.

[29]

Guo M, Zhou B, Hu J, et al. Porous polymer electrolyte based on poly(vinylidene fluoride)/comb-liked polystyrene via ionic band functionalization. J Membr Sci. 2018;564:663–671.

[30]

Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR. A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer. 2014;55:995–1003.

[31]

Shan Y, Li L, Chen X, Fan S, Yang H, Jiang Y. Gentle haulers of lithium-ion-nanomolybdenum carbide fillers in solid polymer electrolyte. ACS Energy Lett. 2022;7:2289–2296.

[32]

Zhang X, Liu T, Zhang S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc. 2017;139:13779–13785.

[33]

Yuan Y, Chen L, Li Y, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte. Energy Mater Dev. 2023;1:9370004.

[34]

Liu S, Zhao Y, Li X, Yu J, Yan J, Ding B. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv Mater. 2021;33:2008084.

[35]

Shi P, Ma J, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat Nanotechnol. 2023;18:602–610.

[36]

Li M, An H, Song Y, et al. Ion–-dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J Am Chem Soc. 2023;145:25632–25642.

[37]

Wu Q, Fang M, Jiao S, et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat Commun. 2023;14:6296.

[38]

Huang Y, Chen B, Duan J, et al. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed. 2020;59:3699–3704.

[39]

Song XL, Chen L, Gao LJ, Ren JT, Yuan ZY. Engineering g-C3N4 based materials for advanced photocatalysis: recent advances. Green Energy Environ. 2024;9:166–197.

[40]

She X, Wu J, Zhong J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy. 2016;27:138–146.

[41]

Yang X, Liu J, Pei N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery. Nano Micro Lett. 2023;15:74.

[42]

Bauschlicher CW, Haskins JB, Bucholz EW, Lawson JW, Borodin O. Structure and energetics of Li+–(BF4-)n, Li+–(FSI-)n, and Li+–(TFSI-)n: ab initio and polarizable force field approaches. J Phys Chem B. 2014;118:10785–10794.

[43]

Lang J, Long Y, Qu J, et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 2019;16:85–90.

[44]

Zhang X, Wang S, Xue C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv Mater. 2019;31:1806082.

[45]

Bag S, Zhou C, Kim PJ, Pol VG, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy Storage Mater. 2020;24:198–207.

[46]

Peled E, Menkin S. Review—SEI: past, present and future. J Electrochem Soc. 2017;164: A1703–A1719.

[47]

Zheng Y, Li X, Li CY. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Storage Mater. 2020;29:42–51.

[48]

Wen J, Huang Y, Duan J, et al. Highly adhesive li-bn nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano. 2019;13:14549–14556.

[49]

Wei Y, Liu TH, Zhou W, et al. Enabling all-solid-state Li metal batteries operated at 30°C by molecular regulation of polymer electrolyte. Adv Energy Mater. 2023;13:2203547.

[50]

Deng Z, Huang Z, Shen Y, et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule. 2020;4:2017–2029.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (2264KB)

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/